Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Concert of magnetic moments

14.06.2019

An international collaboration between researchers from Germany, the Netherlands, and South Korea has uncovered a new way how the electron spins in layered materials can interact. In their publication in the journal Nature Materials, the scientists report a hitherto unknown chiral coupling that is active over relatively long distances. As a consequence, spins in two different magnetic layers that are separated by non-magnetic materials can influence each other even though they are not adjacent.

Magnetic solids form the foundation of modern information technology. For example, these materials are ubiquitous in memories such as hard disk drives. Functionality and efficiency of these devices is determined by the physical properties of the magnetic solids.

Chiral Coupling

The spins (red and blue arrows) in distant magnetic layers can couple due to the discovered long-range interaction, which is illustrated as a white string connecting two spins. This coupling leads to a clockwise canting between the spins in the two layers. Its depicted mirror image with the opposite sense of canting is not found in the considered systems.

Credit: Forschungszentrum Jülich / Jan-Philipp Hanke

The latter originate from the "concert of spins" - the interactions between microscopically small magnetic moments within the material. Understanding and directing this concert is a fundamental question for both research and applications.

Two magnetic materials can influence each other over long distances even if they are not in direct contact. In the past, such a long-range interaction has been observed, for example, in heterostructures of magnetic iron layers that are separated by a thin chromium spacer.

A unique fingerprint of the so-called interlayer coupling is the parallel or antiparallel alignment of the magnetic moments in the iron layers.

This phenomenon is technologically important since the electrical resistance of the two possible configurations is drastically different - which is known as giant magnetoresistance effect.

It is used in operating magnetic memories and sensors, and in 2007 the Nobel Prize in Physics was awarded jointly to Peter Grünberg and Albert Fert for their discovery.

A group of scientists has now extended this "concert of spins" by a new type of long-range interlayer coupling. They report in the journal Nature Materials that the discovered interaction leads to a special configuration of the magnetic moments, which is neither parallel nor antiparallel but has a specific chirality.

This means that the resulting arrangement of spins is not identical to its mirror image - just like our left hand is different from our right hand.

Such chiral interactions in crystals are very rare in nature. Using theoretical simulations on the supercomputer JURECA in Jülich, the researchers identified the interplay between the crystal structure and relativistic effects as origin of the observed chiral interlayer coupling.

This flavor of the "concert of spins" offers novel opportunities for engineering complex magnetic configurations that could be useful to store and process data more efficiently in the future.

Original publication:

D.-S. Han et al.
Long-range chiral exchange interaction in synthetic antiferromagnets
Nature Materials (2019), https://doi.org/10.1038/s41563-019-0370-z
Article has an altmetric score of 107

Further information:

Peter Grünberg Institut, Quanten-Theorie der Materialien (PGI-1/IAS-1)

Topological Nanoelectronics Group – JGU Mainz


Ansprechpartner:

Prof. Dr. Yuriy Mokrousov
Peter Grünberg Institut – Quanten-Theorie der Materialien (PGI-1/IAS-1)
Tel.: +49 2461 61-4434
E-Mail: y.mokrousov@fz-juelich.de

Dr. Jan-Philipp Hanke
Peter Grünberg Institut – Quanten-Theorie der Materialien (PGI-1/IAS-1)
Tel.: +49 2461 61-6651
E-Mail: j.hanke@fz-juelich.de

Media Contact

Tobias Schlößer
t.schloesser@fz-juelich.de
49-246-161-4771

 @fz_juelich

http://www.fz-juelich.de 

Tobias Schlößer | EurekAlert!
Further information:
https://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/EN/2019/notifications/2019-06-13-chirale-ww.html
http://dx.doi.org/10.1038/s41563-019-0370-z

More articles from Information Technology:

nachricht Foundations Laid for Building-Scale GPS Technology
20.01.2020 | Technische Universität Chemnitz

nachricht Man versus machine: Can AI do science?
14.01.2020 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new look at 'strange metals'

21.01.2020 | Materials Sciences

Body's natural signal carriers can help melanoma spread

21.01.2020 | Health and Medicine

Structual color barcode micromotors for multiplex biosensing

21.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>