Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloud computing speeds up problem solving and saves energy

28.11.2011
This work studies how grid and cloud computing can be applied to efficiently solving propositional satisfiability problem (SAT) instances.

Propositional logic provides a convenient language for expressing real-world originated problems such as AI planning, automated test pattern generation, bounded model checking and cryptanalysis. The interest in SAT solving has increased mainly due to improvements in the solving algorithms, which recently have increasingly focused on using parallelism offered by multi-CPU computers.

Partly orthogonally to these improvements this work studies several novel approaches to parallel solving of SAT instances in a grid of widely distributed "virtual" computers instead of workstations or supercomputers.

The doctoral dissertation of Licentiate of Science (Technology) Antti Hyvärinen examines the solving of hard structured problems using cloud computing. According to Hyvärinen, cloud computing can significantly speed up problem solving and save energy. Cloud computing means decentralising IT services so that tens, hundreds or thousands of distributed computers can be used simultaneously.

Hyvärinen says that solving practical problems often requires going through large amounts of data efficiently and performing automatic inference based on the material. For instance, when the link between certain genes and the onset of a disease is studied, the material from which correlations should be found can be extremely extensive.

− Cloud computing speeds up solving a problem because it is possible to use thousands of computers instead of just one. Instead of spending ten years looking for a solution, the computers may solve the problem in a matter of hours.

Hyvärinen explains that decentralising computers also saves energy.

− Computers produce a lot of heat and there is a major demand for computing capacity in large cities in the south. Due to the warm climate in these areas, cooling the heat produced by the computers consumes a lot of electricity.

Speed requires parallel computing

Hyvärinen says that the speed of computer processors, which execute program commands, will no longer increase significantly. If we want faster results in the future, all computing should be performed in parallel by several computers.

However, parallel programming is difficult. The dissertation presents several analytical and experimental results that offer solutions to the problems related to parallel processes. These new methods can be used to solve several previously unsolved problems for the first time. In practice, certain algorithms have been developed so that they can more efficiently make use of several processors simultaneously, decreasing the computational time.

Hyvärinen uses a propositional logic to model structured problems. Due to its general nature, this logic enables the modelling of different types of problems from bioinformatics to artificial intelligence design.

The doctoral dissertation of Antti Hyvärinen, “Grid Based Propositional Satisfiability Solving”, will be examined at the School of Science Department of Information and Computer Science on 28 November 2011 at noon (lecture hall T2, Konemiehentie 2, Espoo).

The dissertation is available online at: http://lib.tkk.fi/Diss/
http://lib.tkk.fi/Diss/2011/isbn9789526043685/isbn9789526043685.pdf

Terhi Arvela | alfa
Further information:
http://www.aalto.fi

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>