Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chip-Scale Tunable Laser To Enable Bandwidth-On-Demand In Advanced Optical Networks

13.03.2014

Researchers from A*STAR’s Institute of Microelectronics (IME) and Nanyang Technological University (NTU) have demonstrated the smallest wavelength-tunable laser fabricated by microelectromechanical system (MEMS) technology.

Telecommunication providers can deliver bandwidth-on-demand at higher profit margins with the Singapore-developed tunable laser 

Researchers from A*STAR’s Institute of Microelectronics (IME) and Nanyang Technological University (NTU) have demonstrated the smallest wavelength-tunable laser fabricated by microelectromechanical system (MEMS) technology.

The laser features a wide tuning range which enables telecommunications providers to cost-effectively expand system capacity in advanced optical networks to support high data packets at ultra fast speed. By having one laser, instead of several, that can generate light over a range of wavelengths, the network infrastructure is greatly simplified, and inventory and operational costs are dramatically reduced, thus strengthening the capability of telecommunications providers to deliver bandwidth-on-demand services at higher profit margins. 

To keep up with increasing consumer demands for faster internet connectivity and greater network coverage, service providers need to revamp their network architectures. In fibre-optic communications, advanced wavelength division multiplexing (WDM) networks typically rely on single wavelength laser sources, making them expensive, time-intensive, energy-inefficient and logistically impractical for service providers to increase their system capacity. 

On the other hand, commercial tunable lasers require multiple components in their set-up in order to achieve the necessary wide tuning range, thereby contributing to the bulkiness of these lasers and rendering them unsuitable for system integration.

To tackle these challenges, the joint team from IME and NTU has demonstrated an on-chip integrated laser, the smallest reported tunable laser fabricated by MEMS technology that can generate light from 1531.2 nm to 1579.5 nm of the near-infrared region, relevant to optical telecommunications. Compared to MEMS tunable laser based on external cavity design, the new laser significantly improves the coupling efficiency of 50% to more than 75% to offer wide tuning range using processing steps that are more streamlined and amenable to mass production. 

Presented at the prestigious 2013 International Electron Devices Meeting (IEDM) in the USA , the design uses simple packaging and provides ease of fabrication for mass production. This miniature on-chip system can also be readily integrated into high-density photonic circuits to achieve smaller form-factor. These distinct functionalities and highlights make the laser an attractive light source for next generation optical telecommunications, as well as in other spectroscopy applications.

Dr Cai Hong, the IME scientist who is leading the research project, commented, “Our laser exploits the superior light converging ability of the rod lens and parabolic mirror of the 3D micro-coupling system to achieve both wide wavelength tuning range and small form factor. In external cavity tunable lasers, wide tuning range is traditionally at the expense of small form factor.”

Professor Liu Ai Qun, from the School of Electrical and Electronic Engineering, NTU, said: “This new chip is very attractive to communications and biomedical device companies because of its small size and low cost. Our prototype, a 1 cm by 1 cm microchip, is the smallest tunable laser which can be easily manufactured as it is ten times smaller than most commercially available tunable laser devices. The key innovation was that our tunable laser is integrated onto a microchip using MEMs technology, made possible only through NTU’s strong expertise in MEMs, backed by a decade of solid research into single-chip solutions.”

“This breakthrough signifies the successful partnership enjoyed by IME and NTU, leveraging on each other’s strengths which led to the successful design, fabrication, packaging and characterisation of this new chip which is expected to impact industries which require tunable laser technology such as in optical fiber communications,” added Prof. Liu, who is also Programme Director at VALENS, an NTU research centre which focuses on bio-instrumentation, devices and signal processing, and has collaborations with many international industry partners.

Professor Dim-Lee Kwong, Executive Director of IME, said, “The tunable laser is a timely solution to address a key technological hurdle that is holding back the outreach of affordable, dynamic and versatile optical network services to consumers. We expect this breakthrough to augment IME’s capabilities in silicon photonics to enable product developers and relevant industries to get a head start in the optical networking space.”

Media Contact:
Dr Shin-Miin SONG
Research Publicity, Institute of Microelectronics A*STAR
DID: (65) 6770-5317
Email: songsm@ime.a-star.edu.sg


 About Institute of Microelectronics (IME)

The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, IME's mission is to add value to Singapore's semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics. For more information about IME, please visit http://www.ime.a-star.edu.sg

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis, as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories.

Please visit www.a-star.edu.sg

Associated links

Lee Swee Heng | Research SEA
Further information:
http://www.researchsea.com

Further reports about: A*STAR Advanced Chip-Scale IME MEMS Microelectronics Science fabrication lasers processing smallest wavelength

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>