Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheap 3-D printer can produce self-folding materials

25.04.2018

CMU process takes advantage of a common printing defect

Researchers at Carnegie Mellon University have used an inexpensive 3-D printer to produce flat plastic items that, when heated, fold themselves into predetermined shapes, such as a rose, a boat or even a bunny.


A computer-controlled process developed at Carnegie Mellon University enables flat pieces of plastic produced in an inexpensive 3-D printer to assume predetermined 3-D shapes when heated.

Credit: Carnegie Mellon University

Lining Yao, assistant professor in the Human-Computer Interaction Institute and director of the Morphing Matter Lab, said these self-folding plastic objects represent a first step toward products such as flat-pack furniture that assume their final shapes with the help of a heat gun. Emergency shelters also might be shipped flat and fold into shape under the warmth of the sun.

Self-folding materials are quicker and cheaper to produce than solid 3-D objects, making it possible to replace noncritical parts or produce prototypes using structures that approximate the solid objects. Molds for boat hulls and other fiberglass products might be inexpensively produced using these materials.

Yao will present her group's research on this method, which she calls Thermorph, at CHI 2018, the Conference on Human Factors in Computing Systems, April 21-26 in Montreal, Canada.

Other researchers have explored self-folding materials, but typically have used exotic materials or depended on sophisticated processing techniques not widely available. Yao and her research team were able to create self-folding structure by using the least expensive type of 3-D printer -- an FDM printer -- and by taking advantage of warpage, a common problem with these printers.

"We wanted to see how self-assembly could be made more democratic --accessible to many users," Yao said.

FDM printers work by laying down a continuous filament of melted thermoplastic. These materials contain residual stress and, as the material cools and the stress is relieved, the thermoplastic tends to contract. This can result in warped edges and surfaces.

"People hate warpage," Yao said. "But we've taken this disadvantage and turned it to our advantage."

To create self-folding objects, she and her team precisely control this process by varying the speed at which thermoplastic material is deposited and by combining warp-prone materials with rubber-like materials that resist contracture.

The objects emerge from the 3-D printer as flat, hard plastic. When the plastic is placed in water hot enough to turn it soft and rubbery -- but not hot enough to melt it -- the folding process is triggered.

Though they used a 3-D printer with standard hardware, the researchers replaced the machine's open source software with their own code that automatically calculates the print speed and patterns necessary to achieve particular folding angles.

"The software is based on new curve-folding theory representing banding motions of curved area. The software based on this theory can compile any arbitrary 3-D mesh shape to an associated thermoplastic sheet in a few seconds without human intervention," said Byoungkwon An, a research affiliate in HCII.

"It's hard to imagine this being done manually," Yao said.

Though these early examples are at a desktop scale, making larger self-folding objects appears feasible.

"We believe the general algorithm and existing material systems should enable us to eventually make large, strong self-folding objects, such as chairs, boats or even satellites," said Jianzhe Gu, HCII research intern.

###

An, Gu and Ye Tao of Yao's research group are lead authors of the research paper, collaborating with other researchers from CMU, Zhejiang University, Syracuse University, University of Aizu, and TU Wien.

A video showing the self-folding process is available at https://vimeo.com/265829811

Media Contact

Byron Spice
bspice@cs.cmu.edu
412-268-9068

 @CMUScience

http://www.cmu.edu 

Byron Spice | EurekAlert!

More articles from Information Technology:

nachricht Accelerating quantum technologies with materials processing at the atomic scale
15.05.2019 | University of Oxford

nachricht A step towards probabilistic computing
15.05.2019 | University of Konstanz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>