Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Camera technology in vehicles: Low-latency image data compression

22.02.2018

The number of cameras in cars is increasing. However, through the flood of data the internal networks are being pushed to their limits. Special compression methods reduce the amount of video data, but exhibit a high degree of latency for coding. Fraunhofer researchers have adapted video compression in such a way that a latency is almost no longer perceivable. It is therefore of interest for use in road traffic or for autonomous driving. This technology will be on display at the Embedded World from 27 February until 1 March 2018 in Nuremberg in hall 4 (booth 4-470).

Up to 12 cameras are currently installed in new vehicle models, mostly in the headlights or taillights or the side mirrors. An on-board computer built into the car uses the data for the lane assistant, parking assist system or to recognize other road users or possible obstacles, for example.


© iStock/arosoft

"If autonomous driving catches on as quickly as predicted, the number of cameras will increase further," forecasts Prof. Benno Stabernack of the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institut, HHI in Berlin.

Ten times more data

This means even more strain on the internal data networks of vehicles. Currently, these can process a data volume of around one gigabit per second. In HD quality, this data quantity is already reached with one camera. "Compression methods help here," says Stabernack.

The Fraunhofer HHI, for example, has made a decisive contribution to the development of the two video coding standards H.264/Advanced Video Coding (AVC) and H.265/MPEG High Efficiency Video Coding (HEVC). "With these methods, the data quantities can be sharply reduced. In this way, more than ten times the quantity of data can be transmitted," emphasizes the group leader of the "Video Coding and Machine Learning" department at the Fraunhofer HHI.

Normally, 30 to 60 images per second are sent from a camera to the vehicle’s central computer. By compressing the image data, a small delay in transmission occurs, known as the latency. "Usually, this is five to six images per second," explains Stabernack. The reason for this is that the methods compare an image with those that have already been transmitted in order to determine the difference between the current image and its predecessors. The networks then only send the changes from image to image. This determination takes a certain amount of time.

Latency of less than one image per second

"However, this loss of time can be of decisive importance in road traffic," says Stabernack. In order to avoid latency, the professor and his team only use special mechanisms of the H.264-coding method, whereby determining the differences in individual images no longer takes place between images, but within an image. This makes it a lowlatency method.

"With our method the delay is now less than one image per second, almost real time. We can therefore now also use the H.264 method for cameras in vehicles," is how Stabernack describes the additional value. The technology was implemented in the form of a special chip. In the camera it compresses the image data, and in the on-board computer it decodes them again.

Higher image repetition frequency and resolution

The researchers in Berlin have had their method patented and sell their know-how to the industry in the form of a license. Customers are automotive suppliers, and the first vehicle models with the Fraunhofer technology are already on the market.

"During development we combined our know-how from work on the video compression standards and our hardware expertise. The transmission of image data in real time is a precondition for the video compression of video data from car cameras becoming established. With it, the use of devices with a higher image repetition frequency and resolution would then be possible. For camera models which produce even more data and are therefore more precise and faster," is how Stabernack summarizes the significance of the technology.

In the next stage, the researchers also want to transfer their method to the HEVC standard and put their experience to good use in upcoming standardization formats. The are exhibiting their technology at the Embedded World from 27 February until 1 March 2018 in Nuremberg in hall 4 (booth 4-470).

Weitere Informationen:

https://www.hhi.fraunhofer.de/en/press-media/press-releases.html

Anne Rommel | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI
Further information:
http://www.hhi.fraunhofer.de

More articles from Information Technology:

nachricht Advanced AI boosts clinical analysis of eye images
19.09.2019 | Universitätsspital Bern

nachricht Quantum computers by AQT and University of Innsbruck leverage Cirq for quantum algorithm development
16.09.2019 | Universität Innsbruck

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>