Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018

By stacking and connecting layers of stretchable circuits on top of one another, engineers have developed an approach to build soft, pliable "3D stretchable electronics" that can pack a lot of functions while staying thin and small in size. The work is published in the Aug. 13 issue of Nature Electronics.

As a proof of concept, a team led by the University of California San Diego has built a stretchable electronic patch that can be worn on the skin like a bandage and used to wirelessly monitor a variety of physical and electrical signals, from respiration, to body motion, to temperature, to eye movement, to heart and brain activity. The device, which is as small and thick as a U.S. dollar coin, can also be used to wirelessly control a robotic arm.


This is the device compared to a US dollar coin.

Credit: University of California San Diego, Zhenlong Huang

"Our vision is to make 3D stretchable electronics that are as multifunctional and high-performing as today's rigid electronics," said senior author Sheng Xu, a professor in the Department of NanoEngineering and the Center for Wearable Sensors, both at the UC San Diego Jacobs School of Engineering.

Xu was named among MIT Technology Review's 35 Innovators Under 35 list in 2018 for his work in this area.

To take stretchable electronics to the next level, Xu and his colleagues are building upwards rather than outwards. "Rigid electronics can offer a lot of functionality on a small footprint--they can easily be manufactured with as many as 50 layers of circuits that are all intricately connected, with a lot of chips and components packed densely inside. Our goal is to achieve that with stretchable electronics," said Xu.

The new device developed in this study consists of four layers of interconnected stretchable, flexible circuit boards. Each layer is built on a silicone elastomer substrate patterned with what's called an "island-bridge" design.

Each "island" is a small, rigid electronic part (sensor, antenna, Bluetooth chip, amplifier, accelerometer, resistor, capacitor, inductor, etc.) that's attached to the elastomer. The islands are connected by stretchy "bridges" made of thin, spring-shaped copper wires, allowing the circuits to stretch, bend and twist without compromising electronic function.

Making connections

This work overcomes a technological roadblock to building stretchable electronics in 3D. "The problem isn't stacking the layers. It's creating electrical connections between them so they can communicate with each other," said Xu. These electrical connections, known as vertical interconnect accesses or VIAs, are essentially small conductive holes that go through different layers on a circuit. VIAs are traditionally made using lithography and etching. While these methods work fine on rigid electronic substrates, they don't work on stretchable elastomers.

So Xu and his colleagues turned to lasers. They first mixed silicone elastomer with a black organic dye so that it could absorb energy from a laser beam. Then they fashioned circuits onto each layer of elastomer, stacked them, and then hit certain spots with a laser beam to create the VIAs. Afterward, the researchers filled in the VIAs with conductive materials to electrically connect the layers to one another. And a benefit of using lasers, notes Xu, is that they are widely used in industry, so the barrier to transfer this technology is low.

Multifunctional 'smart bandage'

The team built a proof-of-concept 3D stretchable electronic device, which they've dubbed a "smart bandage." A user can stick it on different parts of the body to wirelessly monitor different electrical signals. When worn on the chest or stomach, it records heart signals like an electrocardiogram (ECG). On the forehead, it records brain signals like a mini EEG sensor, and when placed on the side of the head, it records eyeball movements. When worn on the forearm, it records muscle activity and can also be used to remotely control a robotic arm. The smart bandage also monitors respiration, skin temperature and body motion.

"We didn't have a specific end use for all these functions combined together, but the point is that we can integrate all these different sensing capabilities on the same small bandage," said co-first author Zhenlong Huang, who conducted this work as a visiting Ph.D. student in Xu's research group.

And the researchers did not sacrifice quality for quantity. "This device is like a 'master of all trades.' We picked high quality, robust subcomponents--the best strain sensor we could find on the market, the most sensitive accelerometer, the most reliable ECG sensor, high quality Bluetooth, etc.--and developed a clever way to integrate all these into one stretchable device," added co-first author Yang Li, a nanoengineering graduate student at UC San Diego in Xu's research group.

So far, the smart bandage can last for more than six months without any drop in performance, stretchability or flexibility. It can communicate wirelessly with a smartphone or laptop up to 10 meters away. The device runs on a total of about 35.6 milliwatts, which is equivalent to the power from 7 laser pointers.

The team will be working with industrial partners to optimize and refine this technology. They hope to test it in clinical settings in the future.

###

Paper title: "Three-Dimensional Integrated Stretchable Electronics." Co-authors include joint co-first authors Zhenlong Huang, Yifei Hao and Yang Li, Hongjie Hu, Chonghe Wang, Akihiro Nomoto, Yue Gu, Yimu Chen, Tianjiao Zhang, Weixin Li, Yusheng Lei, NamHeon Kim, Chunfeng Wang, Lin Zhang, Ayden Maralani, Xiaoshi Li and Albert Pisano, UC San Diego; Taisong Pan and Yuan Lin, University of Electronic Science and Technology of China; Jeremy W. Ward and Michael F. Durstock, The Air Force Research Laboratory, Wright-Patterson Air Force Base.

This work is supported by the Center for Wearable Sensors, Center of Healthy Aging and the Contextual Robotics Institute, all at UC San Diego, and the National Institutes of Health (grant UL1TR001442).

Media Contact

Ioana Patringenaru
ipatrin@eng.ucsd.edu
858-822-0899

 @UCSanDiego

http://www.ucsd.edu 

Ioana Patringenaru | EurekAlert!

More articles from Information Technology:

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht A burst of ”synchronous” light
08.11.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>