Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown researchers teach computers to see optical illusions

24.09.2018

By making a neural-network computer model that can be fooled by optical illusions like humans, the researchers advanced knowledge of the human visual system and may help improve artificial vision

Is that circle green or gray? Are the center lines straight or tilted?


Brown University computer vision experts teach computers to see context-dependent optical illusions, in the hopes of helping artificial vision algorithms take context into account and be more robust.

Credit: Serre Lab/Brown University

Optical illusions can be fun to experience and debate, but understanding how human brains perceive these different phenomena remains an active area of scientific research. For one class of optical illusions, called contextual phenomena, those perceptions are known to depend on context.

For example, the color you think a central circle is depends on the color of the surrounding ring. Sometimes the outer color makes the inner color appear more similar, such as a neighboring green ring making a blue ring appear turquoise -- but sometimes the outer color makes the inner color appear less similar, such as a pink ring making a grey circle appear greenish.

A team of Brown University computer vision experts went back to square one to understand the neural mechanisms of these contextual phenomena. Their study was published on Sept. 20 in Psychological Review.

"There's growing consensus that optical illusions are not a bug but a feature," said Thomas Serre, an associate professor of cognitive, linguistic and psychological sciences at Brown and the paper's senior author. "I think they're a feature. They may represent edge cases for our visual system, but our vision is so powerful in day-to-day life and in recognizing objects."

For the study, the team lead by Serre, who is affiliated with Brown's Carney Institute for Brain Science, started with a computational model constrained by anatomical and neurophysiological data of the visual cortex. The model aimed to capture how neighboring cortical neurons send messages to each other and adjust one another's responses when presented with complex stimuli such as contextual optical illusions.

One innovation the team included in their model was a specific pattern of hypothesized feedback connections between neurons, said Serre. These feedback connections are able to increase or decrease -- excite or inhibit -- the response of a central neuron, depending on the visual context.

These feedback connections are not present in most deep learning algorithms. Deep learning is a powerful kind of artificial intelligence that is able to learn complex patterns in data, such as recognizing images and parsing normal speech, and depends on multiple layers of artificial neural networks working together. However, most deep learning algorithms only include feedforward connections between layers, not Serre's innovative feedback connections between neurons within a layer.

Once the model was constructed, the team presented it a variety of context-dependent illusions. The researchers "tuned" the strength of the feedback excitatory or inhibitory connections so that model neurons responded in a way consistent with neurophysiology data from the primate visual cortex.

Then they tested the model on a variety of contextual illusions and again found the model perceived the illusions like humans.

In order to test if they made the model needlessly complex, they lesioned the model -- selectively removing some of the connections. When the model was missing some of the connections, the data didn't match the human perception data as accurately.

"Our model is the simplest model that is both necessary and sufficient to explain the behavior of the visual cortex in regard to contextual illusions," Serre said. "This was really textbook computational neuroscience work -- we started with a model to explain neurophysiology data and ended with predictions for human psychophysics data."

In addition to providing a unifying explanation for how humans see a class of optical illusions, Serre is building on this model with the goal of improving artificial vision.

State-of-the-art artificial vision algorithms, such as those used to tag faces or recognize stop signs, have trouble seeing context, he noted. By including horizontal connections tuned by context-dependent optical illusions, he hopes to address this weakness.

Perhaps visual deep learning programs that take context into account will be harder to fool. A certain sticker, when stuck on a stop sign can trick an artificial vision system into thinking it is a 65-mile-per-hour speed limit sign, which is dangerous, Serre said.

###

The research team included Brown graduate student David Mély and postdoctoral scholar Drew Linsley. The research was supported by the National Science Foundation (IIS-1252951) and DARPA (YFA N66001-14-1-4037).

Media Contact

Mollie Rappe
mollie_rappe@brown.edu
401-863-1362

 @brownuniversity

http://news.brown.edu/ 

Mollie Rappe | EurekAlert!
Further information:
https://news.brown.edu/articles/2018/09/illusions
http://dx.doi.org/10.1037/rev0000109

More articles from Information Technology:

nachricht Quantum computers by AQT and University of Innsbruck leverage Cirq for quantum algorithm development
16.09.2019 | Universität Innsbruck

nachricht Artificial Intelligence speeds up photodynamics simulations
12.09.2019 | University of Vienna

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>