Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain-inspired methods to improve wireless communications

01.11.2018

Researchers are always seeking more reliable and more efficient communications, for everything from televisions and cellphones to satellites and medical devices.

One technique generating buzz for its high signal quality is a combination of multiple-input multiple-output techniques with orthogonal frequency division multiplexing.


Virginia Tech researchers are using brain-inspired machine learning techniques to increase the energy efficiency of wireless receivers.

Credit: Virginia Tech

Virginia Tech researchers Lingjia Liu and Yang (Cindy) Yi are using brain-inspired machine learning techniques to increase the energy efficiency of wireless receivers.

Their published findings, "Realizing Green Symbol Detection Via Reservoir Computing: An Energy-Efficiency Perspective," received the Best Paper Award from the IEEE Transmission, Access, and Optical Systems Technical Committee.

Liu and Yi, associate and assistant professors respectively in the Bradley Department of Electrical and Computer Engineering, along with Liu's Ph.D. student Rubayet Shafin, are collaborating with researchers from the Information Directorate of the U.S. Air Force Research Laboratory -- Jonathan Ashdown, John Matyjas, Michael Medley, and Bryant Wysocki.

This combination of techniques allows signals to travel from transmitter to receiver using multiple paths at the same time. The technique offers minimal interference and provides an inherent advantage over simpler paths for avoiding multipath fading, which noticeably distorts what you see when watching over-the-air television on a stormy day, for example.

"A combination of techniques and frequency brings many benefits and is the main radio access technology for 4G and 5G networks," said Liu. "However, correctly detecting the signals at the receiver and turning them back into something your device understands can require a lot of computational effort, and therefore energy."

Liu and Yi are using artificial neural networks -- computing systems inspired by the inner workings of the brains -- to minimize the inefficiency. "Traditionally, the receiver will conduct channel estimation before detecting the transmitted signals," said Yi. "Using artificial neural networks, we can create a completely new framework by detecting transmitted signals directly at the receiver."

This approach "can significantly improve system performance when it is difficult to model the channel, or when it may not be possible to establish a straightforward relation between the input and output," said Matyjas, the technical advisor of AFRL's Computing and Communications Division and an Air Force Research Laboratory Fellow.

Reservoir Computing

The team has suggested a method to train the artificial neural network to operate more efficiently on a transmitter-receiver pair using a framework called reservoir computing--specifically a special architecture called echo state network (ESN). An ESN is a kind of recurrent neural network that combines high performance with low energy.

"This strategy allows us to create a model describing how a specific signal propagates from a transmitter to a receiver, making it possible to establish a straightforward relationship between the input and the output of the system," said Wysocki, the chief engineer of the Air Force Research Laboratory Information Directorate.

Testing the efficiency

Liu, Yi, and their AFRL collaborators compared their findings with results from more established training approaches -- and found that their results were more efficient, especially on the receiver side.

"Simulation and numerical results showed that the ESN can provide significantly better performance in terms of computational complexity and training convergence," said Liu. "Compared to other methods, this can be considered a 'green' option."

Media Contact

Lindsey Haugh
jangus@vt.edu
540-231-2476

 @vtnews

http://www.vtnews.vt.edu 

Lindsey Haugh | EurekAlert!
Further information:
https://vtnews.vt.edu/articles/2018/09/eng-ece-wireless-communications.html

Further reports about: Computing neural network wireless communications

More articles from Information Technology:

nachricht NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
15.11.2019 | National Institute of Standards and Technology (NIST)

nachricht Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)
14.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Designer lens helps see the big picture

21.11.2019 | Interdisciplinary Research

Machine learning microscope adapts lighting to improve diagnosis

21.11.2019 | Life Sciences

Soft skin-like robots you can put in your pocket

21.11.2019 | Interdisciplinary Research

VideoLinks
Science & Research
Overview of more VideoLinks >>>