Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial intelligence automatically detects disturbances in power supply grids

01.04.2019

The grid is changing as the big, centralized providers of the past are replaced by smaller, distributed suppliers. Keeping such complex networks running stable requires high-resolution sensor technology – AI provides a way to make accurate predictions and automatically detect any disturbances or anomalies in real time. Here is how Fraunhofer researchers developed the compression techniques, algorithms and neural networks to make a power supply fit for the future.

The way power is generated is in transition: Whereas, before, all our power came from big power plants, these days it comes from a range of distributed sources as well, including wind turbines, photovoltaic systems and other similar facilities.


Andre Kummerow, a researcher at the Advanced System Technology (AST) branch of Fraunhofer IOSB, working on an algorithm.

Fraunhofer IOSB-AST/Martin Käßler

This shift has a big impact on our grid – with particular challenges for operators of transmission grids. How to monitor the proper functioning of grid parameters such as phase angle and frequencies? Might there be discrepancies or anomalies in the proper functioning of the grid? Or are there lines or power plants down?

Today’s standard measurement technology is no longer able to reliably furnish answers to these sorts of questions. More and more operators are, therefore, turning to additional phasor measurement units (PMUs) and other digital solutions. These systems measure the amplitude and phase of current and voltage up to 50 times a second. This process generates huge volumes of data, easily several gigabytes a day.

Data compression saves 80 percent of data
In response, researchers at the Advanced System Technology (AST) branch of the Fraunhofer Institute for Optronics, System Technologies and Image Exploitation IOSB in Ilmenau are looking for ways to optimize the data processing using artificial intelligence, with a view to improving grid reliability and establishing a power supply system fit for the future.

“We can use AI to automatically log, compress and process up to 4.3 million data sets per day,” says Prof. Peter Bretschneider, head of the Energy department at the AST branch of the Fraunhofer IOSB.

In the first phase of their work, the researchers have come up with a compression technique that saves 80 percent of the data. Not only is it easier to store the data, but faster and more efficient to process it too.

Automated data processing in real time
In the second phase, the researchers went on to utilize the phasor measurement data they had collected to apply neural networks – one of the key components for today’s artificial intelligence. More specifically, they “fed” the neural networks with examples of typical system outages. This way, the algorithms gradually learn to distinguish – and precisely categorize – normal operating data from defined system malfunctions.

Following the training phase, the researchers applied the neural networks to current data generated from phasor measurements – data that previously had to be taken and manually processed. This is where the algorithm made its first leap into real-time application, making split-second decisions on where there is an anomaly or fault, as well as the type and location of that disturbance. To take an example, if one power plant should fail, an abrupt spike can be expected in the load placed on the other power plants.

The increased load slows down the generators, and the frequency decreases. This calls for rapid countermeasures because if the frequency sinks below a threshold value, the operator may be forced to cut off sections of the grid for the sake of system stability. And by rapid, we are talking about less than 500 milliseconds. Since the algorithm is capable of reaching a decision within 20–50 milliseconds, that leaves sufficient time to implement the appropriate fully automated countermeasures.

The algorithm is ready to be implemented, as the researchers continue to work on the control and regulation of the relevant countermeasures. The development is of interest not only to the big operators of power transmission grids, but also to regional distribution grids. “To make an analogy with the road network, what’s the point of having clear motorways when the smaller regional roads are permanently blocked?” says Bretschneider.

Power to predict problems of the future
All the same, the researchers are not restricting themselves to the problems of today, but also want to factor in anomalies that have not even occurred so far. “If we continue to pursue renewables, it may lead to situations we don’t even know about yet,” says Bretschneider. Here, too, the researchers have turned to artificial intelligence, where they work on categorizing these sorts of unknown phenomena and developing the appropriate algorithms using digital network maps.

Weitere Informationen:

https://www.fraunhofer.de/en/press/research-news/2019/research-news-april-2019/a...

Martin Käßler | Fraunhofer Research News

More articles from Information Technology:

nachricht Shaping nanoparticles for improved quantum information technology
15.10.2019 | DOE/Argonne National Laboratory

nachricht Controlling superconducting regions within an exotic metal
11.10.2019 | Ecole Polytechnique Fédérale de Lausanne

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

New deep-water coral discovered

22.10.2019 | Life Sciences

DNA-reeling bacteria yield new insight on how superbugs acquire drug-resistance

22.10.2019 | Life Sciences

Heat Pumps with Climate-Friendly Refrigerant Developed for Indoor Installation

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>