Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial intelligence automatically detects disturbances in power supply grids

01.04.2019

The grid is changing as the big, centralized providers of the past are replaced by smaller, distributed suppliers. Keeping such complex networks running stable requires high-resolution sensor technology – AI provides a way to make accurate predictions and automatically detect any disturbances or anomalies in real time. Here is how Fraunhofer researchers developed the compression techniques, algorithms and neural networks to make a power supply fit for the future.

The way power is generated is in transition: Whereas, before, all our power came from big power plants, these days it comes from a range of distributed sources as well, including wind turbines, photovoltaic systems and other similar facilities.


Andre Kummerow, a researcher at the Advanced System Technology (AST) branch of Fraunhofer IOSB, working on an algorithm.

Fraunhofer IOSB-AST/Martin Käßler

This shift has a big impact on our grid – with particular challenges for operators of transmission grids. How to monitor the proper functioning of grid parameters such as phase angle and frequencies? Might there be discrepancies or anomalies in the proper functioning of the grid? Or are there lines or power plants down?

Today’s standard measurement technology is no longer able to reliably furnish answers to these sorts of questions. More and more operators are, therefore, turning to additional phasor measurement units (PMUs) and other digital solutions. These systems measure the amplitude and phase of current and voltage up to 50 times a second. This process generates huge volumes of data, easily several gigabytes a day.

Data compression saves 80 percent of data
In response, researchers at the Advanced System Technology (AST) branch of the Fraunhofer Institute for Optronics, System Technologies and Image Exploitation IOSB in Ilmenau are looking for ways to optimize the data processing using artificial intelligence, with a view to improving grid reliability and establishing a power supply system fit for the future.

“We can use AI to automatically log, compress and process up to 4.3 million data sets per day,” says Prof. Peter Bretschneider, head of the Energy department at the AST branch of the Fraunhofer IOSB.

In the first phase of their work, the researchers have come up with a compression technique that saves 80 percent of the data. Not only is it easier to store the data, but faster and more efficient to process it too.

Automated data processing in real time
In the second phase, the researchers went on to utilize the phasor measurement data they had collected to apply neural networks – one of the key components for today’s artificial intelligence. More specifically, they “fed” the neural networks with examples of typical system outages. This way, the algorithms gradually learn to distinguish – and precisely categorize – normal operating data from defined system malfunctions.

Following the training phase, the researchers applied the neural networks to current data generated from phasor measurements – data that previously had to be taken and manually processed. This is where the algorithm made its first leap into real-time application, making split-second decisions on where there is an anomaly or fault, as well as the type and location of that disturbance. To take an example, if one power plant should fail, an abrupt spike can be expected in the load placed on the other power plants.

The increased load slows down the generators, and the frequency decreases. This calls for rapid countermeasures because if the frequency sinks below a threshold value, the operator may be forced to cut off sections of the grid for the sake of system stability. And by rapid, we are talking about less than 500 milliseconds. Since the algorithm is capable of reaching a decision within 20–50 milliseconds, that leaves sufficient time to implement the appropriate fully automated countermeasures.

The algorithm is ready to be implemented, as the researchers continue to work on the control and regulation of the relevant countermeasures. The development is of interest not only to the big operators of power transmission grids, but also to regional distribution grids. “To make an analogy with the road network, what’s the point of having clear motorways when the smaller regional roads are permanently blocked?” says Bretschneider.

Power to predict problems of the future
All the same, the researchers are not restricting themselves to the problems of today, but also want to factor in anomalies that have not even occurred so far. “If we continue to pursue renewables, it may lead to situations we don’t even know about yet,” says Bretschneider. Here, too, the researchers have turned to artificial intelligence, where they work on categorizing these sorts of unknown phenomena and developing the appropriate algorithms using digital network maps.

Weitere Informationen:

https://www.fraunhofer.de/en/press/research-news/2019/research-news-april-2019/a...

Martin Käßler | Fraunhofer Research News

More articles from Information Technology:

nachricht Multifunctional e-glasses monitor health, protect eyes, control video game
28.05.2020 | American Chemical Society

nachricht Researchers incorporate computer vision and uncertainty into AI for robotic prosthetics
28.05.2020 | North Carolina State University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>