Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AI senses people's pose through walls

12.06.2018

X-ray vision has long seemed like a far-fetched sci-fi fantasy, but over the last decade a team led by Professor Dina Katabi from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) has continually gotten us closer to seeing through walls.

Their latest project, "RF-Pose," uses artificial intelligence (AI) to teach wireless devices to sense people's postures and movement, even from the other side of a wall.


This is Mingmin Zhao, pictured right.

Credit: Jason Dorfman, MIT CSAIL

The researchers use a neural network to analyze radio signals that bounce off people's bodies, and can then create a dynamic stick figure that walks, stops, sits and moves its limbs as the person performs those actions.

The team says that the system could be used to monitor diseases like Parkinson's and multiple sclerosis (MS), providing a better understanding of disease progression and allowing doctors to adjust medications accordingly. It could also help elderly people live more independently, while providing the added security of monitoring for falls, injuries and changes in activity patterns.

(All data the team collected has subjects' consent and is anonymized and encrypted to protect user privacy. For future real-world applications, the team plans to implement a "consent mechanism" in which the person who installs the device is cued to do a specific set of movements in order for it to begin to monitor the environment.)

The team is currently working with doctors to explore multiple applications in healthcare.

"We've seen that monitoring patients' walking speed and ability to do basic activities on their own gives healthcare providers a window into their lives that they didn't have before, which could be meaningful for a whole range of diseases," says Katabi, who co-wrote a new paper about the project. "A key advantage of our approach is that patients do not have to wear sensors or remember to charge their devices."

Besides health-care, the team says that RF-Pose could also be used for new classes of video games where players move around the house, or even in search-and-rescue missions to help locate survivors.

"Just like how cellphones and Wi-Fi routers have become essential parts of today's households, I believe that wireless technologies like these will help power the homes of the future," says Katabi, who co-wrote the new paper with PhD student and lead author Mingmin Zhao, MIT professor Antonio Torralba, postdoc Mohammad Abu Alsheikh, graduate student Tianhong Li and PhD students Yonglong Tian and Hang Zhao. They will present it later this month at the Conference on Computer Vision and Pattern Recognition (CVPR) in Salt Lake City, Utah.

One challenge the researchers had to address is that most neural networks are trained using data labeled by hand. A neural network trained to identify cats, for example, requires that people look at a big dataset of images and label each one as either "cat" or "not cat." Radio signals, meanwhile, can't be easily labeled by humans.

To address this, the researchers collected examples using both their wireless device and a camera. They gathered thousands of images of people doing activities like walking, talking, sitting, opening doors and waiting for elevators.

They then used these images from the camera to extract the stick figures, which they showed to the neural network along with the corresponding radio signal. This combination of examples enabled the system to learn the association between the radio signal and the stick figures of the people in the scene.

Post-training, RF-Pose was able to estimate a person's posture and movements without cameras, using only the wireless reflections that bounce off people's bodies.

Since cameras can't see through walls, the network was never explicitly trained on data from the other side of a wall - which is what made it particularly surprising to the MIT team that the network could generalize its knowledge to be able to handle through-wall movement.

"If you think of the computer vision system as the teacher, this is a truly fascinating example of the student outperforming the teacher," says Torralba.

Besides sensing movement, the authors also showed that they could use wireless signals to accurately identify somebody 83 percent of the time out of a line-up of 100 individuals. This ability could be particularly useful for the application of search-and-rescue operations, when it may be helpful to know the identity of specific people.

For this paper, the model outputs a 2-D stick figure, but the team is also working to create 3-D representations that would be able to reflect even smaller micromovements. For example, it might be able to see if an older person's hands are shaking regularly enough that they may want to get a check-up.

"By using this combination of visual data and AI to see through walls, we can enable better scene understanding and smarter environments to live safer, more productive lives," says Zhao.

Media Contact

Adam Conner-Simons
aconner@csail.mit.edu
617-324-9135

 @mit_csail

http://www.csail.mit.edu/ 

Adam Conner-Simons | EurekAlert!

Further reports about: CSAIL MIT cameras movements neural network radio signal

More articles from Information Technology:

nachricht Your Smartphone is Watching You: Dangerous Security Holes in Tracker Apps
13.08.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht Another step forward on universal quantum computer
13.08.2018 | Yokohama National University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Can radar replace stethoscopes?

14.08.2018 | Medical Engineering

The end-Cretaceous extinction unleashed modern shark diversity

14.08.2018 | Life Sciences

Light-controlled molecules: Scientists develop new recycling strategy

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>