Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AI Hits The Ice

08.03.2018

The curling robot "Curly" is the first AI-based robot to demonstrate competitive curling skills in an icy real environment with its high uncertainties

Scientists from seven different Korean research institutions including Prof. Klaus-Robert Müller, head of the machine-learning group at TU Berlin and guest professor at Korea University, have developed an AI-based curling robot.


© Korea University


© Korea University

“Curly” masters the extremely complex sport on a level that is at least similar to a highly skilled amateur. On March 8, 2018, Korea University will demonstrate the robot’s skills to the public at Icheon Training Center of the Korea Paralympic Committee. As one of the highlights, “Curly” will compete with a human team from Chuncheon Machinery Industry High School following the rules of Olympic curling.

AI-based systems have demonstrated a surprising versatility not only for standard tasks of automation, but also for complex decision-making. AI has already entered many spheres of our daily lives, for instance when using search, recommendation or translation tools or online services.

Prominent AI-applications include strategic games, such as Go, Poker or Atari; but these mainly take place in virtual worlds and have access to arbitrary large amounts of data. Beyond the virtual world, how to optimally have an AI-based system interact with the real world and it’s uncertainties still poses a major challenge. First successful steps have been taken for example in robotics (see “RoboCup”) or self-driving vehicles. However, optimal interaction with the strong uncertainties of the real world while incorporating complex planning and decision-making still remains a complex and essentially unsolved problem.

The AI-based curling robot “Curly” tackles all of the challenges outlined above. Curling is a highly strategic game of combinatorial complexity – in principle even surpassing the game of “Go” in this respect, as all states are continuous. Optimal reaction to the often unforeseen moves of the opponent is crucial. Moreover, curling is played on a slippery surface, a sheet of ice.

Both the robot control for throwing a stone and the physics engine simulating the stone trajectory need to be calibrated in order to effectively compensate nonlinear friction effects and uncertainties arising from the slippery icy surface. Heterogeneous ice conditions and the systematic impossibility to assess them in detail further add to the challenge of this Olympic discipline as well as the fact that all strategic decision-making, planning, estimation while synchronizing between agents and robot control need not only to be performed within real-time constraints but also under high uncertainties. Lastly, the data available to train the deep neural network-learning component and to calibrate the overall real system is limited.

The AI-based curling robot has demonstrated the ability to master the complex game of curling astonishingly well, notably on a level that is similar to a highly skilled amateur. “The innovative challenge that 'Curly' needs to master is the interaction with an environment which is defined by extreme uncertainties. Despite the slippery surface, 'Curly' is able to plan and play well using innovative deep learning and AI techniques,” says Professor Klaus-Robert Müller, TU Berlin and Korea University.

“Superb technical challenges of this interesting real-world problem needed to be overcome by our interdisciplinary team and it is exciting to see possible future developments of such complex AI-based systems interacting with the real-world, with its large uncertainties, beyond curling,” adds Professor Seong-Whan Lee from Korea University.

“Curly” was developed by seven research institutes (서울시컬링연맹, DGIST, UNIST, 영남대학교, NT로봇, 도전하는사람들, 마농탄토) and was funded by the Ministry of Science and ICT (MSIT).

Image downloads (March 8, 2018, 7:00 am CET):
http://www.tu-berlin.de/?id=193552

For further information please contact:
Prof. Dr. Klaus-Robert Müller
TU Berlin
Phone: +49-30-314-78620
E-Mail: klaus-robert.mueller@tu-berlin.de

Stefanie Terp | idw - Informationsdienst Wissenschaft
Further information:
http://www.tu-berlin.de

Further reports about: Curly deep learning future developments icy surface virtual world

More articles from Information Technology:

nachricht Quantum bugs, meet your new swatter
20.08.2018 | Rice University

nachricht Metamolds: Molding a mold
20.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>