Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


AI and high-performance computing extend evolution to superconductors


Materials by design: Argonne researchers use genetic algorithms for better superconductors.

Owners of thoroughbred stallions carefully breed prizewinning horses over generations to eke out fractions of a second in million-dollar races. Materials scientists have taken a page from that playbook, turning to the power of evolution and artificial selection to develop superconductors that can transmit electric current as efficiently as possible.

This image depicts the algorithmic evolution of a defect structure in a superconducting material. Each iteration serves as the basis for a new defect structure. Redder colors indicate a higher current-carrying capacity.

Credit: Argonne National Laboratory/Andreas Glatz

Perhaps counterintuitively, most applied superconductors can operate at high magnetic fields because they contain defects. The number, size, shape and position of the defects within a superconductor work together to enhance the electric current carrying capacity in the presence of a magnetic field.

Too many defects, however, can lead to blocking the electric current pathway or a breakdown of the superconducting material, so scientists need to be selective in how they incorporate defects into a material.

"When people think of targeted evolution, they might think of people who breed dogs or horses. Ours is an example of materials by design, where the computer learns from prior generations the best possible arrangement of defects." -- Argonne materials scientist Andreas Glatz.

In a new study from the U.S. Department of Energy's (DOEArgonne National Laboratory, researchers used the power of artificial intelligence and high-performance supercomputers to introduce and assess the impact of different configurations of defects on the performance of a superconductor.

The researchers developed a computer algorithm that treated each defect like a biological gene. Different combinations of defects yielded superconductors able to carry different amounts of current. Once the algorithm identified a particularly advantageous set of defects, it re-initialized with that set of defects as a "seed," from which new combinations of defects would emerge.

"Each run of the simulation is equivalent to the formation of a new generation of defects that the algorithm seeks to optimize," said Argonne distinguished fellow and senior materials scientist Wai-Kwong Kwok, an author of the study. "Over time, the defect structures become progressively refined, as we intentionally select for defect structures that will allow for materials with the highest critical current."

The reason defects form such an essential part of a superconductor lies in their ability to trap and anchor magnetic vortices that form in the presence of a magnetic field. These vortices can move freely within a pure superconducting material when a current is applied. When they do so, they start to generate a resistance, negating the superconducting effect. Keeping vortices pinned, while still allowing current to travel through the material, represents a holy grail for scientists seeking to find ways to transmit electricity without loss in applied superconductors.

To find the right combination of defects to arrest the motion of the vortices, the researchers initialized their algorithm with defects of random shape and size. While the researchers knew this would be far from the optimal setup, it gave the model a set of neutral initial conditions from which to work. As the researchers ran through successive generations of the model, they saw the initial defects transform into a columnar shape and ultimately a periodic arrangement of planar defects.

"When people think of targeted evolution, they might think of people who breed dogs or horses," said Argonne materials scientist Andreas Glatz, the corresponding author of the study. "Ours is an example of materials by design, where the computer learns from prior generations the best possible arrangement of defects."

One potential drawback to the process of artificial defect selection lies in the fact that certain defect patterns can become entrenched in the model, leading to a kind of calcification of the genetic data. "In a certain sense, you can kind of think of it like inbreeding," Kwok said. "Conserving most information in our defect 'gene pool' between generations has both benefits and limitations as it does not allow for drastic systemwide transformations. However, our digital 'evolution' can be repeated with different initial seeds to avoid these problems."

In order to run their model, the researchers required high-performance computing facilities at Argonne and Oak Ridge National Laboratory. The Argonne Leadership Computing Facility and Oak Ridge Leadership Computing Facility are both DOE Office of Science User Facilities.

An article based on the study, "Targeted evolution of pinning landscapes for large superconducting critical currents," appeared in the May 21 edition of the Proceedings of the National Academy of Sciences. In addition to Kwok and Glatz, Argonne's Ivan Sadovskyy, Alexei Koshelev and Ulrich Welp also collaborated.

Funding for the research came from the DOE's Office of Science.


Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit

Media Contact

Chris Kramer


Chris Kramer | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?
12.07.2019 | Technische Universität München

nachricht Playfully discover atom manipulation
09.07.2019 | University of Vienna

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

Science & Research
Overview of more VideoLinks >>>