Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advanced AI boosts clinical analysis of eye images

19.09.2019

A fast and reliable machine learning tool, developed by the ARTORG Center, University of Bern and the Department of Ophthalmology, Inselspital brings Artificial Intelligence (AI) closer to clinical use in Ophthalmology. The novel method published in Nature Scientific Reports on September 19, 2019 presents a tool that reliably extracts meaning from extensive image data. Based on a convolutional neural network (CNN) the tool is able to provide results within seconds, thus supporting the doctor with comprehensive image analysis during a consultation with the patient.

Modern medical imaging devices allow ophthalmologists to monitor chronic eye conditions in detail. Ophthalmologists mostly choose Optical Coherence Tomography (OCT), an imaging tool that generates 3D images of the eye at extremely high resolution.


But without AI support the large amount of images and information exceeds the capacity of an individual expert. The challenge of this study was, to provide AI-tools, capable of analyzing a large amount of data at very high speed to facilitate the use of all available information from image analysis during patient consultations.

The research team from Artificial Intelligence in Medical Imaging (AIMI) laboratory at the ARTORG Center for Biomedical Engineering Research, University of Bern, and the Department of Ophthalmology at Inselspital, Bern University Hospital now presents a machine learning method capable of identifying a wide range of biomarkers from OCT-scans of the retina virtually providing clinically relevant data support instantaneously.

Artificial Intelligence spots biomarkers for each disease type

“In our approach, the AI classifies patient OCT scans on the basis of disease-typical biomarkers”, explains Prof. Dr. Raphael Sznitman, group Head of the ARTORG´s AIMI lab. Biomarkers are landmarks and features in OCT scans that can indicate a disease or can be used to show worsening or improvement after treatment.

“What sets our results apart is that our AI algorithm provides a rich biomarker characterization, able to classify scans on the basis of well understood and known indications from the clinical community. Here, we manage to identify these biomarkers autonomously, without the cost and effort of having a trained human eye specialist previously mark the structures, the technology needs to focus on.”

3D imaging monitors sight-threatening macular diseases

The most frequent eye diseases worldwide are linked to degenerative eye conditions that deteriorate the macula (part of the rear part of the eye or retina), ultimately leading to loss of sight. Prof. Dr. med. Sebastian Wolf, Chairman and Head of the Department of Ophthalmology at Inselspital, Bern University Hospital, as a clinician uses OCT-scans for the therapy of chronic retinal conditions, such as age-related macular degeneration (AMD) or diabetic macular edema (DME).

“As patient numbers are growing, we need to develop automated AI tools in the clinical setting to assist doctors in analyzing the abundant data of OCT scans. Having accurate, comprehensive information from the analysis of a patient’s OTC at hand during the consultation, is key to improve management of such diseases in the future. The tool presented in this paper is an important step in achieving the goal of better care for the patient.”

Machine learning makes the abundance of images exploitable

To assist eye doctors in clinical routine and research, computer programs can automatically extract, summarize and present the most important information from the growing number of routinely generated OCT scans. “This automated analysis can provide a cost effective and reliable tool for doctors to having to go through every image manually”, says Thomas Kurmann PhD student at ARTORG AIMI lab.

“Our results so far are showing, that our Artificial Intelligence can consistently classify the most common disease types automatically with great precision, and identify a wide range of biomarkers typically found in pathological eye scans.”

Wissenschaftliche Ansprechpartner:

• Prof. Dr.-Ing. Dr. med. Sebastian Wolf, Chairman and Head of the Department of Ophthalmology at Inselspital, Bern University Hospital,
• Prof. Dr. Raphael Sznitman, Group Head Artificial Intelligence in Medical Imaging and Director ARTORG Center for Biomedical Engineering Research, University of Bern

Marcel Wyler | idw - Informationsdienst Wissenschaft
Further information:
http://www.insel.ch

Further reports about: 3D AI ARTORG Artificial Intelligence Biomarkers OCT Ophthalmology eye conditions scans

More articles from Information Technology:

nachricht Project AUTOASSERT: DFKI scientists develop software tool for the support of German electronics companies
07.07.2020 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Genetic code for stem cell heart repair detected
06.07.2020 | Universität Rostock

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Shock-dissipating fractal cubes could forge high-tech armor

08.07.2020 | Materials Sciences

Scientists use nanoparticle-delivered gene therapy to inhibit blinding eye disease in rodents

08.07.2020 | Health and Medicine

'Growing' active sites on quantum dots for robust H2 photogeneration

08.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>