Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A webcam is enough to produce a real-time 3D model of a moving hand

08.06.2018

Capturing hand and finger movements within milliseconds is becoming increasingly important for many applications, from virtual reality to human-machine interaction and Industry 4.0. So far, it has required enormous technical effort, which in turn has limited the possible applications. Computer scientists at the Max Planck Institute for Informatics have now developed a software system that requires only the built-in camera of a laptop, due to the interaction of various neural networks. For the first time, the researchers will be presenting the program at stand G75 in hall 27 of the computer fair Cebit, which will take place in Hannover from June 11th onward.

If the computer scientist Franziska Müller holds her hand in front of the laptop camera, the hand's virtual counterpart appears on the screen. Immediately this is overlaid by a colorful virtual hand skeleton. No matter what movements Müller's hand makes in front of the webcam, the colored bones of the model do the same.


Franziska Müller, Max Planck Institute for Informatics, has developed a software system that requires only the built-in camera of a laptop to produce a real-time 3D model of a moving hand.

Oliver Dietze

Müller demonstrates the software she developed together with Professor Christian Theobalt and other researchers from the Max Planck Institute for Computer Science in Saarbrücken, Stanford University and the Spanish King Juan Carlos University. So far no other software can do this with such a low-cost camera.

Since it works in almost every kind of filmed scene, it can be used anywhere, and thus trumps previous approaches that require a depth camera or multiple cameras.

The algorithm, with which the software transforms the two-dimensional information of the video image in real time into the three-dimensional movement model of the hand’s bones, is based on a special kind of neural network: a so-called "convolutional neural network" or CNN for short.

The researchers have trained it to detect the bones of the hand. They have generated the necessary training data with another neural network. The result: The software calculates the exact 3D poses of the hand’s bones in milliseconds.

Even if some of them are occluded, for example by an apple being held in the hand, this does not affect the software. Only several hands working together still confuse the software. Solving this is the researchers' next goal.

More information:
http://handtracker.mpi-inf.mpg.de/projects/GANeratedHands/

Press photos: www.uni-saarland.de/pressefotos

Questions can be directed to:
Franziska Müller
Max Planck Institute for Informatics
Saarland Informatics Campus E1.4
E-mail: frmueller@mpi-inf.mpg.de
Phone: +49 681 9325 4057

Editor:
Gordon Bolduan
Science Communication
Competence Center Computer Science Saarland
Saarland Informatics Campus
E-mail: bolduan@mmci.uni-saarland.de
Phone: +49 681 302 70741

Friederike Meyer zu Tittingdorf | Universität des Saarlandes

Further reports about: 3D Max Planck Institute movements multiple cameras neural network

More articles from Information Technology:

nachricht NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
15.11.2019 | National Institute of Standards and Technology (NIST)

nachricht Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)
14.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

How LISA pathfinder detected dozens of 'comet crumbs'

19.11.2019 | Physics and Astronomy

Trash talk hurts, even when it comes from a robot

19.11.2019 | Social Sciences

The evolution and genomic basis of beetle diversity

19.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>