Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new electronic component to replace flash storage

19.10.2015

Researchers funded by the Swiss National Science Foundation have created a new electronic component that could replace flash storage. This memristor could also be used one day in new types of computers.

Two IT giants, Intel and HP, have entered a race to produce a commercial version of memristors, a new electronics component that could one day replace flash memory (DRAM) used in USB memory sticks, SD cards and SSD hard drives.


“Basically, memristors require less energy since they work at lower voltages,” explains Jennifer Rupp, professor in the Department of Materials at ETH Zurich and holder of a SNSF professorship grant. “They can be made much smaller than today’s memory modules, and therefore offer much greater density. This means they can store more megabytes of information per square millimetre.” But currently memristors are only at the prototype stage.

Less rigid computing

Along with her chemist colleague Markus Kubicek, Jennifer Rupp has built a memristor based on a slice of perovskite just 5 nanometres thick.(*) And the interesting thing is that she has shown that the component has three stable resistive states. As a result, it can not only store the 0 or 1 of a standard bit, but can also be used for information encoded by three states – the 0, 1 and 2 of a “trit”.

“Our component could therefore also be useful for a new type of IT that is not based on binary logic, but on a logic that provides for information located ‘between’ the 0 and 1,” continues Jennifer Rupp. “This has interesting implications for what is referred to as fuzzy logic, which seeks to incorporate a form of uncertainty into the processing of digital information. You could describe it as less rigid computing.”

Another potential application is neuromorphic computing, which aims to use electronic components to reproduce the way in which neurons in the brain process information. “The properties of a memristor at a given point in time depend on what has happened before,” explains Jennifer Rupp. “This mimics the behaviour of neurons, which only transmit information once a specific activation threshold has been reached.”

Primarily, the researchers at ETH Zurich have characterised in great detail the ways in which the component works by conducting electro-chemical studies. “We were able to identify the carriers of electrical charge and understand their relationship with the three stable states,” explains the researcher. “This is extremely important knowledge for materials science which will be useful in refining the way the storage operates and in improving its efficiency.”

The fourth component

The principle of the memristor was first described in 1971, as the fourth basic component of electronic circuits (alongside resistors, capacitors and inductors). Since the 2000s, researchers have suggested that certain types of resistive memory could act as memristors.

(*) M. Kubicek, R. Schmitt, F. Messerschmitt and J.L.M. Rupp (2015), Uncovering Two Competing Switching Mechanisms for Epitaxial and Ultra-Thin Strontium Titanate-Based Resistive Switching Bits, ACS Nano, doi/10.1021/acsnano.5b02752.
(Available for journalists in PDF from the SNSF: com@snf.ch)

Contact

Professor Jennifer L.M. Rupp
Electrochemical Materials
ETH Zurich
Hönggerbergring 64 (HPP P 21)
8093 Zurich
Tel: +41 44 633 04 51
E-mail: jennifer.rupp@mat.ethz.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-151019-press-release-ne...

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>