Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A burst of ”synchronous” light

08.11.2018

Excited photo-emitters can cooperate and radiate simultaneously, a phenomenon called superfluorescence. Researchers from Empa and ETH Zurich, together with colleagues from IBM Research Zurich, have recently been able to create this effect with long-range ordered nanocrystal superlattices. This discovery could enable future developments in LED lighting, quantum sensing, quantum communication and future quantum computing. The study has just been published in the renowned journal "Nature".

Some materials spontaneously emit light if they are excited by an external source, for instance a laser. This phenomenon is known as fluorescence. However, in several gases and quantum systems a much stronger emission of light can occur, when the emitters within an ensemble spontaneously synchronize their quantum mechanical phase with each other and act together when excited.


Superlattices under the microscope (white light illumination).

Empa

In this way, the resulting light output can be much more intense than the sum of the individual emitters, leading to an ultrafast and bright emission of light – superfluorescence. It only occurs, however, when those emitters fulfill stringent requirements, such as having the same emission energy, high coupling strength to the light field and a long coherence time.

As such, they are strongly interacting with each other but at the same time are not easily disturbed by their environment. This has not been possible up to now using technologically relevant materials. Colloidal quantum dots could just be the ticket; they are a proven, commercially appealing solution already employed in the most advanced LCD television displays – and they fulfill all the requirements.

Researchers at Empa and ETH Zurich, led by Maksym Kovalenko, together with colleagues from IBM Research Zurich, have now shown that the most recent generation of quantum dots made of lead halide perovskites offer an elegant and practically convenient path to superfluorescence on-demand.

For this, the researchers arranged perovskite quantum dots into a three-dimensional superlattice, which enables the coherent collective emission of photons – thus creating superfluorescence. This provides the basis for sources of entangled multi-photon states, a missing key resource for quantum sensing, quantum imaging and photonic quantum computing.

“Birds of a feather flock together”

A coherent coupling among quantum dots requires, however, that they all have the same size, shape and composition because “birds of a feather flock together” in the quantum universe, too. “Such long-range ordered superlattices could only be obtained from a highly monodisperse solution of quantum dots, the synthesis of which had been carefully optimized over the last few years,” said Maryna Bodnarchuk, a senior scientist at Empa.

With such ”uniform” quantum dots of various sizes, the research team could then form superlattices by properly controlling the solvent evaporation.

The final proof of superfluorescence came from optical experiments performed at temperatures of around minus 267 degrees Celsius. The researchers discovered that photons were emitted simultaneously in a bright burst: “This was our ‘Eureka! ‘ moment. The moment we realized that this was a novel quantum light source,” said Gabriele Rainó from ETH Zurich and Empa who was part of the team that carried out the optical experiments.

The researchers consider these experiments as a starting point to further exploit collective quantum phenomena with this unique class of material.

“As the properties of the ensemble can be boosted compared to just the sum of its parts, one can go way beyond engineering the individual quantum dots,” added Michael Becker from ETH Zurich and IBM Research.

The controlled generation of superfluorescence and the corresponding quantum light could open new possibilities in LED lighting, quantum sensing, quantum-encrypted communication and future quantum computing.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Maksym Kovalenko
Empa, Thin Films and Photovoltaics
ETH, Functional Inorganic Materials
Phone +41 58 765 4557
Maksym.Kovalenko@empa.ch

Dr. Maryna Bodnarchuck
Empa, Thin Films and Photovoltaics
Phone +41 58 765 59 40
Maryna.Bodnarchuk@empa.ch

Dr. Gabriele Rainò
ETH Zurich, Laboratory of Inorganic Chemistry
Phone +41 44 633 09 97
rainog@ethz.ch

Dr. Thilo Stöferle
IBM Research – Zurich
Phone +41 44 724 85 01
tof@zurich.ibm.com

Originalpublikation:

G Raino, MA Becker, MI Bodnarchuck, RF Mahrt, MV Kovalenko, T Stöferle; Superfluorescence from Lead Halide Perovskite Quantum Dot Superlattices; Nature, DOI: 10.1038/s41586-018-0683-0
https://www.nature.com/articles/s41586-018-0683-0

Weitere Informationen:

https://www.empa.ch/web/s604/nature-superfluorescence

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Information Technology:

nachricht Health data under lock and key: TU Darmstadt introduces long-term-secure storage
08.11.2018 | Technische Universität Darmstadt

nachricht Making steps toward improved data storage
08.11.2018 | Kyoto University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

Im Focus: Dissecting a molecular toolbox driving motility and infection

HZI scientists establish how the cytoskeleton is regulated and manipulated

Various bacterial pathogens stimulate their hosts to engulf them during infection processes, allowing the bacteria to gain access to the host cell cytoplasm....

Im Focus: Electronic Highways on the Nanoscale

For the first time, the targeted functionalization of carbon-based nanostructures allows the direct mapping of current paths, thereby paving the way for novel quantum devices

Computers are getting faster and increasingly powerful. However, at the same time computing requires noticeably more energy, which is almost completely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

 
Latest News

Exploiting Epigenetic Variation for Plant Breeding

08.11.2018 | Life Sciences

Building block of "happiness hormone" is key to controlling immunity

08.11.2018 | Life Sciences

Health data under lock and key: TU Darmstadt introduces long-term-secure storage

08.11.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>