Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s Largest Earth Science Experiment to Begin at UA’s Biosphere 2

15.11.2012
WHAT:
Commissioning of the Landscape Evolution Observatory, or LEO, the world’s only artificial watershed located at the University of Arizona Biosphere 2. Members of the media will have opportunities to interview key scientists and shoot video of the experiment before a formal ceremony.
WHEN:
Thursday, Nov. 29
12:30-1:30 p.m. – Media preview: Media will receive a tour of the facility and will have the opportunity to ask questions during an availability with LEO Science Committee members Peter Troch, Travis Huxman and Stephen DeLong and UA College of Science Dean Joaquin Ruiz.

2-2:45 p.m. – Formal LEO commissioning program begins with a welcome and remarks. During this time, LEO will experience its first artificial rain.

WHERE:
UA Biosphere 2
32540 S. Biosphere Road
Oracle, Ariz. 85623
RSVP:
Please RSVP for the media preview by Nov. 20 to Daniel Stolte, University Communications, 520-626-4402 or stolte@email.arizona.edu
BACKGROUND:
The world's largest interdisciplinary Earth science experiment has been constructed by the UA in the newly renovated and reinvigorated Biosphere 2. The recently completed Landscape Evolution Observatory is designed to reproduce the complex physical and biological interactions that occur in the zone from the bottom of the soil to the lower atmosphere - the critical zone where terrestrial life evolves and adapts to a changing Earth.

Predicting how the Earth’s land surface processes interact with and feed back on the atmospheric, biological and hydrological processes is of unprecedented societal relevance because of the synergistic impact of rapid, extensive changes in land use and global climate.

Housed inside the environmentally controlled greenhouse facility of the UA Biosphere 2, LEO aims to reveal better ways to understand and manage global water resources by providing researchers with real evidence of how the changing climate will affect movement of water and how the atmosphere interacts with the soil. LEO also will yield new insights into a fundamental characteristic of our planet, the co-evolution of life and rock.

Consisting of three sensor-studded, steel-supported watersheds 100 feet long and 40 feet wide, LEO will allow scientists to address fundamental “grand challenges” in Earth systems science such as:

• How will Earth's landscapes change as climate changes?
• How do water, energy and carbon move through landscapes?
• How do biological systems such as vegetation and microbial
communities modify landscapes?
• How will terrestrial water resources alter with climate change?
A network of more than 1,800 sensors and samplers arrayed through each slope will take measurements of the movement of water, energy, nutrients and carbon through engineered landscapes that approach the physical size and complexity of natural landscapes.

Eventually plants will be added to the soil, allowing an unprecedented look at how the development of life and biological systems feedback with dynamic physical processes.

By allowing scientists to run different climate scenarios, LEO makes it possible to understand how water moves through soil and how plants and microbes feedback on the atmosphere in response to, for example, a series of rains followed by a drought.

LEO’s synthetic landscape project is embracing an interdisciplinary approach to experimental design: hydrologists, geomorphologists, geochemists, atmospheric scientists, ecologists and genomicists from the UA and beyond all are collaborating. Rapid data collection and analysis from the LEO project will provide new means of improving computer models that are used to predict how Earth systems will behave in the face of changing climate.

Biosphere 2 offers unique opportunities for the exploration of complex questions in Earth Sciences because it provides space for large-scale experimentation with a high degree of environmental control and dense measurement capability such that realistic complexity can be observed and measured in more detail than in natural systems.

LINKS:

Biosphere 2: http://www.b2science.org
Landscape Evolution Observatory: http://leo.b2science.org
CONTACTS:
John Adams, Biosphere 2 (520-838-6155 or 520-490-2575; jadamsb2@email.arizona.edu)

Daniel Stolte, University Communications (520-626-4402; stolte@email.arizona.edu)

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Event News:

nachricht Within reach of the Universe
08.08.2018 | Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)

nachricht A journey through the history of microscopy – new exhibition opens at the MDC
27.07.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>