Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016

This year's topic of the PCIM Conference in May, in Nuremberg, is the future of power electronics. Prof. Manfred W. Gekeler will present his research results regarding efficiency and electro-magnetic compatibility at the international leading trade fair and conference for power electronics, intelligent drive technology, renewable energies and energy management.

Inverters are used to convert DC voltage into AC voltage and are deployed in three-phase drives, for feeding power of renewable sources (solar or wind) into the mains supply, for uninterruptible power supply or as an active dynamic filter. Lately, the uses of highly promising 3-level pulse inverters have become increasingly popular. Today's conventional design inverters are of the hard-switching type. However, this type produces switching losses, which result in reduced efficiency.


Schematic diagram of the S3L inverter.

TLB GmbH

At the Konstanz University of Applied Sciences Prof. Dr.-Ing. Manfred W. Gekeler developed the S3L inverter, which steers clear of the disadvantages of the conventional hard-switching inverter. With this inverter, Prof. Gekeler has solved the problem of loss of energy in a simple way, namely by adding a snubber circuit. Thanks to its functional principle, this circuit avoids switching losses and significantly increases efficiency. It consists of merely a few simple, passive components and connects the topology of the multi-level inverter with the soft-switching technology.

The "Soft-Switching Three Level (S3L) Inverter" distinguishes itself through its particularly high efficiency and favorable EMC behavior, even when used with standard Si power semiconductors (IGBT, IGCT, GTO). Now Prof. Gekeler has additionally developed a new variant of the switching, the SS3L inverter topology.
The S3L inverter is a pulse-width modulated inverter that operates at switching frequencies of over 30 kHz and output frequencies to approx. 500 Hz. The total harmonic distortion was tested for inverters in the photovoltaic sector and meets the strict regulations in this field. The S3L inverter can be operated at any load angle, from 0 up to 360 degrees (as pulse inverter or pulse rectifier). Another interesting feature of the S3L inverter is the option to limit the rate of rise of output voltages du/dt and currents di/dt. External du/dt filters are then no longer required and are quasi "integrated".
Advantages of S3L inverters include low losses and high switching frequencies. Their efficiency is excellent, even at high switching frequencies. They thus enable inexpensive "cooling", e.g. in smaller, lightweight cooling elements, fans and chokes. S3L inverters are smaller and more compact than other inverter solutions. Thanks to the high switching frequencies used, no annoying whistling noises occur.

... more about:
»EMC »S3L »TLB »frequencies »topology »voltage

S3L inverters are "robust". There is no "dead time" required in the control signals. In addition, short faulty pulses in the control signals of IGBTs would not lead to a switch-off, but operation would simply continue. Moreover, there are only few inductive voltage peaks, which ensure high reliability.

S3L inverters stand out due to their high electro-magnetic compatibility. As they cause less harmonic current in motor current, there are less motor power losses and utilization of the motor is higher. Due to the du/dt limit of the output voltages, capacitive compensation currents via ball bearings and motor problems are avoided.
S3L is also suitable for the use in inverter circuits with SiC and GaN transistors. In this case, it is not about reducing the losses but limiting du/dt and voltage peaks – which are caused by parasitic inductivities and high du/dt (particularly important for motor control units).

Professor Manfred W. Gekeler will present his inverters and test results at the PCIM Conference. The scientist, who teaches and does research at the Konstanz University of Applied Sciences, will present the results of his EMC and efficiency comparison measurements at the leading trade fair for power electronics and intelligent drive technology. The PCIM conference will take place in Nuremberg from May 10-12, 2016. Prof. Gekeler will be holding a presentation on the "Comparison of the EMC and Efficiency Characteristics of Hard and Soft Switching Three-Level Inverters" on Tuesday, May 10, 2016.

The Konstanz University of Applied Sciences has entrusted Technologie-Lizenz-Büro (TLB) GmbH with the marketing of its innovation and the global economic implementation of this cutting-edge technology. So far experts have shown strong interest in the invention.

Licensing of this new technology is once again available for photovoltaics, motor control, uninterruptible power supply and wind power. Patent applications for the invention have already been granted in major industrialized nations (DE, JP, KR, CN, USA, CA, EP).
For further information - including on licensing - please contact the TLB Innovation Manager Dipl.-Ing. Emmerich Somlo (somlo@tlb.de).

Weitere Informationen:

http://www.tlb.en
http://www.htwg-konstanz.de/Leistungselektronik.4549.0.html

Annette Siller | idw - Informationsdienst Wissenschaft

Further reports about: EMC S3L TLB frequencies topology voltage

More articles from Event News:

nachricht Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine
13.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Conference on Laser Polishing – LaP: Fine Tuning for Surfaces
12.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>