Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens at the 2014 UIC ERTMS World Conference in Istanbul

01.04.2014

According to the "The Rail Journey 2020" study, long-distance European rail traffic will increase by about 20 percent by 2020, and passenger numbers will exceed 1.36 billion.

Ensuring that this amount of mobility will be available in future is one of the major challenges of our times. An efficient long-distance railway infrastructure forms the basis for environmentally compatible mobility without borders, as well as for the further economic development of regions and countries.

Against this background, Siemens will demonstrate how safe, interoperable European rail traffic "without borders" can actually be achieved in Gallery 2, B3 at the 11th UIC (Union internationale des chemins de fer) ERTMS World Conference in Istanbul, which is to be held on April 1–4, 2014.

ETCS increases line capacity and ensures continuous rail traffic throughout Europe.

... more about:
»Conference »ETCS »Istanbul »Monitoring »UIC »activities »capacity

Train protection systems ensure safe rail transportation of passengers and goods. There are currently 14 different train protection systems in use in Europe, which are mutually incompatible. The European Union Directive issued in 1996 to resolve this compatibility problem obligated European train and network operators to equip their trains and lines with the European Train Control System (ETCS). ETCS is a modular system with standardized functions and interfaces that are available in a number of application levels. With ETCS Level 1, the signal aspects are transmitted to the vehicles with the aid of beacons called eurobalises. Level 2, however, uses the mobile radio standard GSM-R to transmit this information from a route control center to the vehicle. With this technology, information is continuously exchanged, independently of fixed signals. This facilitates short intervals between trains and considerably increases the route capacity and safety at speeds up to 350 km/h. At the World Conference, an ETCS emulator "ETCS live" will demonstrate the results of optimized acceleration, driving and braking operations in respect of punctuality and energy efficiency. Visitors will be able see an ATO (Automatic Train Operation) system: The demonstration is based on genuine track data, and every action of a real train driver has to be duplicated to move the train along the realistic track. The ATO beats the energy consumption achieved by even experienced train drivers by five to ten percent. This means that ETCS in combination with this component can use small reserves in the timetables to reap substantial energy savings. The Automation Train Operation system takes over the driving the train on the route and stops it with precision at the platforms. With the aid of the stored route profile, the system calculates how strongly the train has to accelerate and to brake before curves in order to arrive punctually at the next station – and, in doing so, consume as little energy as possible.

The Driver Advisory System optimizes train control and reduces energy consumption

In response to increasing energy and operating costs and in order to reduce CO2 emissions, more and more railway operators are finding it necessary to demand energy-saving, low-wear driving skills from their drivers. As train drivers are often deployed flexibly, they are not always capable of finding the ideal speed profile on every route. The DAS (Driver Advisory System) can now give them suggestions for improving train control. The combination of route data, such as maximum permissible speeds and distance between stations, as well as timetable information enable an optimized speed profile to be calculated and is then recommended to the train driver visually in real-time. The aim is to have drivers follow the optimum speed profile on every route in order to save energy and reduce wear. Whereas DAS still allows the train driver to control the train himself, the ATO system takes over optimized driving of the train until the train stops at the next platform.

Predictive maintenance by means of Condition Monitoring

Rail transportation systems have to run smoothly without interrupting the flows of passengers and goods. Competent and innovative servicing is required to meet the ever increasing availability demands of these systems. In this connection, Siemens uses "Condition Monitoring" to plan maintenance activities efficiently and minimize disruptions to operations. The system data is collected by long-distance transmission and flows directly into everyday maintenance activities. This enables impending damage to be detected at an early stage. Diagnostic data describes the current condition of the systems, assesses trends and provides a catalog of measures to rectify defects.

Dear Sir or Madam, We look forward to welcoming you to our fair booth at B3 in Gallery 2 between April 1 and 4, 2014. In advance of the conference, we will be pleased to arrange discussions with experts on the subjects that interest you and who will be able to show you the innovative ETCS solutions at our booth.

You can reach us by telephone or e-mail:

Ms. Silke Reh

Mobile: +49 174 1551579

silke.reh@siemens.com

We look forward to meeting you!

Silke Reh | Siemens Mobility and Logistics
Further information:
http://www.siemens.com

Further reports about: Conference ETCS Istanbul Monitoring UIC activities capacity

More articles from Event News:

nachricht Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine
13.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Conference on Laser Polishing – LaP: Fine Tuning for Surfaces
12.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>