Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conversing with Luminaries of Cosmology

10.06.2008
In Lindau, Top Talented Young Scientists Listen to the Echoes of the Early Universe

Cosmology - the scientific study of outer space - is a relatively young branch of physics that began to boom after World War II, when rockets and measuring instruments became available to record cosmic rays other than visible light. Since then, it has fundamentally changed our view of the world.

When they come to Lindau in early July of this year, up and coming scientists from around the world will have an opportunity to gain a deeper understanding of the significant stages of this development in personal conversations with its protagonists. During the 58th Meeting of Nobel Laureates - this time dedicated to physics - they will, amongst others, meet Riccardo Giacconi and George F. Smoot, who decisively helped to turn the once-speculative cosmology into an exact science.

Cosmology - the scientific study of outer space - is a relatively young branch of physics that began to boom after World War II, when rockets and measuring instruments became available to record cosmic rays other than visible light. Since then, it has fundamentally changed our view of the world. When they come to Lindau in early July of this year, up and coming scientists from around the world will have an opportunity to gain a deeper understanding of the significant stages of this development in personal conversations with its protagonists. During the 58th Meeting of Nobel Laureates - this time dedicated to physics - they will, amongst others, meet Riccardo Giacconi and George F. Smoot, who decisively helped to turn the once-speculative cosmology into an exact science.

When Albert Einstein framed modern cosmology with his general theory of relativity in 1915, our universe was considered an unfathomably large yet static extension of space and time, without a beginning and without an end. Under today's Standard Model of cosmology, however, we must assume that our universe emerged around 14 billion years ago from a so-called 'Big Bang' and has been expanding at an increasing velocity every since. Things in outer space are incredibly dynamic, as it became clear after 1962, when Riccardo Giocconi successfully recorded x-rays from outside our solar system. With this, he opened a new window for cosmology. In 1981, Giacconi was appointed founding director of the Space Telescope Science Institute and hence became a driving force for the shuttle launch of the Hubble Space Telescope (http://www.hubblesite.org).

The space telescope is named after astronomer Edwin Hubble, who laid the foundation for the theory of the 'Big Bang' already in 1929. That year, he demonstrated that the outer galaxies of the universe are drifting apart from each other like dots on the surface of a balloon in the process of being inflated. This expansion, however, did not necessarily permit the conclusion that the universe had originated in a 'Big Bang' - just as plausible was a steady-state scenario in which the universe appeared to observers to remain the same, as would a current flowing by, as it formed new galaxies and stars while the old ones passed out of sight. Both the Big Bang and the Steady State models of the universe found convinced proponents in disagreement with one another, until the tide began to turn in favour of the Big Bang model in 1964.

With a discarded radio telescope, the two young American astronomers Penzias and Wilson received background interference from all directions that they were initially unable to explain. The more surprising it was to discover that with this signal they had probably picked up a late echo from the Big Bang, a signal the existence of which other astrophysicists had already predicted.

This prediction presumed that if the universe had begun with a Big Bang from an infinitely dense and hot singularity, then it must have consisted primarily of perfect radiation. The wavelength of such black body radiation is a function of temperature alone. For the most part, this roaring sea of energy gradually transformed into matter. Yet a remainder of this radiation, dramatically cooled, can still be measured today and bears witness to the beginnings of our world. If this assumption is true, cosmic background radiation cannot be distributed totally equally but must display very tiny, direction-dependent differences in temperature. Otherwise, there would be no way to explain the emergence of clusters of matter such as galaxies from that field of energy. These differences, however, are not observable from the surface of our earth as its atmosphere absorbs too much cosmic radiation.

To circumvent this, in 1974 the American space authority NASA started its CO(smic) B(ackground) E(xplorer) Project, directed by John Mather and George F. Smoot. In November 1989, the COBE satellite was finally launched into orbit (http://lambda.gsfc.nasa.gov/product/cobe/). Nine minutes later, it sent its first pictures back to earth, providing a precise demonstration of the predicted perfection of the echo of the Big Bang. Charting the COBE pictures, Smoot effectively succeeded in detecting tiny, direction-dependent variations. Aided by these variations, he could identify the coordinates where clusters of matter had begun to develop in the beginning of spacetime. Smoot described the significance of his findings for the biography of our universe 'In human terms, it's like looking at an embryo that's a few hours old",. Generally, the results of NASA's COBE mission are widely regarded as almost irrefutable proof of the Big Bang model. The results of COBE ultimately transformed cosmology into a precise field of science.

A more detailed version of this press release is available at http://www.lindau-nobel.de (Communications/Press Release).

The annual Meetings of Nobel Laureates in Lindau are organised by the Council for the Meetings of Nobel Laureates in Lindau under the presidency of Countess Sonja Bernadotte (Isle of Mainau). The Foundation Lindau Nobelprizewinners Meetings at Lake Constance, whose Founders´ Assembly includes more than 185 Nobel Laureates, supports the Meetings. The natural-scientific Meetings of Nobel Laureates in Chemistry, Physiology or Medicine and in Physics have been held since 1951. Since 2004, the holders of the Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel, have also held biannual meetings on Lake Constance.

Christian Rapp | idw
Further information:
http://www.lindau-nobel.de
http://www.nobelprize.org
http://www.aip.org

More articles from Event News:

nachricht SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe
29.04.2019 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!
17.04.2019 | Heidelberg Laureate Forum Foundation

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

Non-invasive view into the heart

24.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>