Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Public Invited to See Nanosoccer Robots in Action in Pittsburgh

15.05.2008
Nanosoccer returns to the field later this month, when the National Institute of Standards and Technology (NIST) hosts for the second time the world’s most Lilliputian sport.

Three student teams will participate in a public exhibition at the 2008 U.S. “RoboCup Open” in Pittsburgh, Pa., May 25 to 27, where miniature “soccer players”—computer-driven robots six times smaller than an amoeba operating on a field the size of a grain of rice—will show off their skills.

The teams from Carnegie-Mellon University (Pittsburgh, Pa.), the U.S. Naval Academy (Annapolis, Md.) and the University of Waterloo (Waterloo, Ontario, Canada) will meet at the Carnegie Science Center in Pittsburgh, Pa., to put their nanobots (nanoscale robots) through their paces. The nanobots will be demonstrating agility, maneuverability, response to computer control and ability to move objects—all tools that future miniaturized mechanized workers will need for tasks such as microsurgery within the human body or the manufacturing of atom-sized components for microscopic electronic devices.

RoboCup is an annual international competition designed to foster innovations and advances in artificial intelligence and intelligent robotics by using the game of soccer as a testing ground. NIST’s goal in coordinating competitions between the world’s smallest robots is to show the feasibility and accessibility of technologies for fabricating MicroElectroMechanical Systems (MEMS), tiny mechanical devices built onto semiconductor chips and measured in micrometers (millionth of a meter).

The soccer nanobots are operated by remote control under an optical microscope. They move in response to changing magnetic fields or electrical signals transmitted across the microchip arena. Although the bots are a few tens of micrometers to a few hundred micrometers long, they are considered “nanoscale” because their masses range from a few nanograms to a few hundred nanograms. They are manufactured from materials such as aluminum, nickel, gold, silicon and chromium.

Among the nanosoccer drills that will be demonstrated in Pittsburgh are the two-millimeter dash in which nanobots seek fast times for a goal-to-goal sprint across the playing field; a slalom course where the path between goals is blocked by “defenders” (polymer posts); and a ball handling exercise that requires robots to move “nanoballs” (spheres with the diameter of a human hair) into the goal. One team even plans to conduct its runs underwater to lessen friction.

RoboCup and NIST are jointly organizing the upcoming U.S. Open nanosoccer demonstration as the final step toward the first official Nanogram League competition for soccer nanobots at the 2009 international RoboCup event in Austria.

For more information about NIST and nanosoccer, see “2007 RoboCup Nanogram Demonstration Competition”, http://www.nist.gov/public_affairs/calmed/robocup_photos.html

Michael E. Newman | newswise
Further information:
http://www.nist.gov/public_affairs/calmed/robocup_photos.html
http://www.nist.gov

More articles from Event News:

nachricht 5th International Conference on Cellular Materials (CellMAT), Scientific Programme online
02.10.2018 | Deutsche Gesellschaft für Materialkunde e.V.

nachricht Major Project: The New Silk Road
01.10.2018 | Universität Duisburg-Essen

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

15.10.2018 | Life Sciences

Graphene shows unique potential to exceed bandwidth demands of future telecommunications

15.10.2018 | Materials Sciences

Goldilocks principle in biology -- fine-tuning the 'just right' signal load

15.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>