Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESF Conference probes water's mysterious interactions at molecular level

14.04.2008
Some of the most challenging problems in science concern the behaviour of the most commonplace compound on the planet's surface - water. But some of the mysteries are now being unravelled by the latest analysis and imaging techniques in an unfolding story that was presented at a recent conference organised by the European Science Foundation (ESF) focusing on interaction between water and other compounds at the molecular level.

Some of the greatest puzzles involve the interaction between molecules of water and other compounds as they come into proximity. These problems are not purely academic, because they have vital implications for understanding many important processes and biochemical reactions within organisms, some of them implicated in human disease. The molecular properties of water also have great importance for materials science, nanotechnology, and the semiconductor industry.

The underlying problem is that at the molecular level the behaviour of water and particularly interactions with other substances is extremely complex, and correspondingly difficult to explain in a few words. Before some of the exotic effects can be exploited, they must be thoroughly understood, and this in turn depends upon being able to observe the processes in some way. A major focus of the ESF conference was on new techniques for revealing information about the behaviour of water at the molecular scale in different circumstances, according to the conference's chair Marie-Clare Bellissent-Funel. "Various techniques were used to reveal information of water at solid, soft, vapour, protein, membrane, and other interfaces," she said.

High resolution x-ray diffraction is an important technique for analysing water molecules at interfaces, observing the way high-energy x-ray beams are scattered at the points of interaction. The location and orientation of individual water molecules can be detected that way, and already a lot has been learned about the crucial role played by them in critical biochemical reactions, including those involving docking or interactions between proteins. Water molecules also play a crucial role in ushering key components of biology such as metal ions into cells through permeable membranes, and details of further progress understanding the processes involved were presented at the conference. "The understanding of such events could find application in development of medication and design of nanofluidic devices," said Bellissent-Funel.

Such events can only be properly understood by analysing not just the static structure at a point in time, but the dynamic changes over time, and emerging techniques for this were also discussed at the ESF conference, as Bellissent-Funel pointed out. This is difficult to do at present purely by observation, but progress has been made by combining experiments with computer based simulations.

Such simulations incorporate a description of the unusual geometry of the water molecule, which is the source of all the strange and important properties of water. The molecule comprises an oxygen atom with two hydrogen atoms hanging off like Mickey Mouse ears. This gives the molecule an uneven distribution of electric charge, enabling it readily to form weak but significant hydrogen bonds with molecules of both water and other compounds.

Computer models are also being used to simulate behaviour of solutions, in which hydrogen bonds between molecules of water and the solute (substance being dissolved) prevent the latter conglomerating and therefore precipitating out. This is a function of water's "interaction potential", which means the ability or tendency of water molecules to form hydrogen bonds with other molecules. The ability to simulate the behaviour of interactions between water and solute molecules, rather than just between water molecules, represents an important development, said Bellissent-Funel.

The overall complexity of water interface physics was reflected at the ESF conference by the breadth and depth of the presentations, and also by the fact that key speakers were drawn from all over the world, including the US and Japan. But Bellissent-Funel emphasised that Europe had growing strengths and has been successful in recruiting new talent into this dynamic, challenging, and hugely promising field, even attracting some from outside the continent. "It was clear from the short contributions and posters that there is an impressive set of young researchers in this general area, and also that some of them come originally from outside Europe," said Bellissent-Funel. A key point is that these researchers by necessity span a range of disciplines across the whole scientific spectrum, reflecting the fundamental importance of water science.

Thomas Lau | alfa
Further information:
http://www.esf.org/conferences/07225
http://www.esf.org/fileadmin/be_user/activities/research_conferences/Docs_NEW/2007/2007-225%20FP.pdf

More articles from Event News:

nachricht International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg
11.03.2019 | Ostbayerische Technische Hochschule Regensburg

nachricht Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting
01.03.2019 | Kuratorium für die Tagungen der Nobelpreisträger in Lindau e.V.

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>