Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017

The ICTM Conference has established itself as a networking hub for the international turbomachinery industry. For the fourth time in a row, this biennial event was organized by the International Center for Turbomachinery Manufacturing ICTM in Aachen and in collaboration with the Fraunhofer Institutes for Production Technology IPT and Laser Technology ILT. This year’s conference took place February 15-16, 2017. More than 250 experts from 19 countries discussed how to more efficiently develop and manufacture turbines for power plants and aircraft in the digital age.

Over the two-day event, 21 presentations dealt with the influence of advanced machining, additive manufacturing and industry 4.0 on the production of turbomachinery. Turbine manufacturers, corporations and medium-sized companies representing key aspects of diverse process chains have met up every two years since 2011 at the popular conference in Aachen.


The 44 live demonstrations dealing with diverse aspects of turbomachinery manufacturing were very popular and well-attended at the 4th ICTM Conference.

© Fraunhofer ILT, Aachen, Germany.

The number of participants has also risen since the first ICTM Conference – from 190 to 250 – and the number of industry partners exhibiting their products has gone up from 10 to 15. It is particularly notable that the number of demonstrations put on by the two Fraunhofer Institutes has more than doubled.

Whereas in 2011 there were 19 live demonstrations, by 2017 this number had risen to 44 – including demonstrations of additive manufacturing, ultrashort pulse lasers, 5-axis waterjet cutting, and cryogenic cooling of materials that are difficult to machine.

ICTM Center fosters Turbomachinery Expertise

Turbomachinery manufacturers have a great need to exchange information. Yet despite rapid access to information, it is becoming increasingly difficult to find the right facts and figures. "Going forward, you need to know where expertise in new technologies is being developed,” said Prof. Johannes Henrich Schleifenbaum, Head of Additive Manufacturing and Functional Layers at Fraunhofer ILT.

However, to foster new developments, Schleifenbaum added that industry and research needed to work closely together in a targeted and coordinated way. Schleifenbaum, holder of the Chair for Digital Additive Production DAP at RWTH Aachen University, described the International Center for Turbomachinery Manufacturing ICTM, with its current tally of 30 partner companies, as a good example of collaboration in action in the field of turbomachinery production.

Some of the multidisciplinary expertise developed there has already been made available to participants at this year’s ICTM Conference. “When you leave the conference, take this expertise away with you, so that you can draw inspiration from our ideas and innovations,” Schleifenbaum concluded. “Join the ICTM Center, collaborate with us, and become a part of this wonderful network!”

The founding members of the ICTM Center include Munich-based MTU Aero Engines, whose Chief Operating Officer Dr. Rainer Martens gave a presentation on digital engine production. The geared turbofan engines, in which MTU has a substantial stake, have become extremely popular in the aviation industry for reasons such as their low levels of fuel consumption, CO2 emissions and noise emissions. As a result, between 2009 and 2020, production of MTU’s components is expected to quadruple.

The Industrialization of Additive Manufacturing

At MTU, extremely complex and highly integrated compressor rotors play an important role. These compressor rotors have an innovative blade integrated disk (blisk) design and are constructed from heavy-duty titanium alloys that are characterized by their utmost precision (< 30 µm). To manufacture these blisks, MTU has spent over 70 million euros building a new production hall that features a high level of automation and digitalization.

“Here we create a large quantity of big data, which we still have to convert to smart data that can then be of some benefit to us,” reported Dr. Martens in Aachen. “When it comes to turning centers, we are much more advanced because integrated measuring technology already allows us to compare data. For instance, we use geometric data to draw conclusions as to the condition of the machines.”

In addition, the company has been working extremely hard on new simulation techniques to improve production processes. The answer it has found is called integrated computational materials and manufacturing engineering (ICM²E). This new method for improving materials development and manufacturing links together results from individual simulations. The goal is to create a process that coordinates all the parameters so as to obtain a finished part that meets exact specifications.

How innovation changes in times of disruptive, revolutionary technologies that supersede other processes was a topic examined by Dr. Ingomar Kelbassa, Department Manager for Manufacturing Development and Industrialization at Siemens AG in Berlin (Power and Gas Division). “Additive manufacturing in conjunction with the digitalization of production allows us to significantly bypass traditional processes,” explained the former ILT researcher. "For that to happen, though, those involved have to change the way they think.” Recently, Siemens proved that using additive manufacturing as an alternative to standard approaches could pay off.

The company had already introduced solutions for gas turbine combustion system components that were ready for production, but then it had a breakthrough in the 3D printing of rotating components. Siemens fully tested the turbine blades, which were produced from start to finish using additive manufacturing, in a gas turbine. The process employed the selective laser melting (SLM) process developed at Fraunhofer ILT. “The use of SLM leads to a paradigm shift in development and validation, enabling the innovation cycle to be shortened by up to 90 percent. The industrialization of additive manufacturing has thus begun,” Kelbassa explained.

Effectively Using the Advantages of Digital Transformation

The 18 presentations that followed were given by speakers from both industry and research, who examined further challenges facing today’s turbomachinery manufacturing. Among other issues, they considered developments in the fields of laser metal deposition and selective laser melting (Fraunhofer ILT), processes for blisk production (Fraunhofer IPT), and a newly developed method for analyzing big data in turbomachinery manufacturing (SAP). The presentation on this last topic in particular – given by Dr. Volker Kreidler, Head of Industry 4.0 Products & Innovations at SAP SE in Walldorf – highlighted a very important aspect of the digital transformation in turbomachinery manufacturing.

The growing number of sensors and powerful evaluation electronics brings about ever increasing amounts of data, known as “big data.” Here is a typical example: if a computer records 20 values (64 Bit) per millisecond, it will save 4.3 gigabytes of data over the course of an eight-hour shift. Yet how can we handle such a constantly growing volume of data? Which data can be processed in real time? How do users gather data from a wide range of sources? Every company must solve these and many other problems in the coming years if it wants to effectively use the advantages of digital transformation. As a result, big data is likely to be one of the main topics at the “5th Conference of the ICTM International Center for Turbomachinery Manufacturing Aachen” in February 2019.

www.ictm-aachen.com

Contact

Dr.-Ing. Andres Gasser
Manager of the Laser Material Deposition Group
Telephone +49 241 8906-209
andres.gasser@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT

Dipl.-Ing. Daniel Heinen
R&D Manager ICTM Partner Community
Telephone +49 241 8904-443
daniel.heinen@ipt.fraunhofer.de
Fraunhofer Institute for Production Technology IPT

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Event News:

nachricht The Future of Work
03.12.2019 | Max-Planck-Institut für ethnologische Forschung

nachricht First International Conference on Agrophotovoltaics in August 2020
15.11.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>