Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

50 years of Brown Dwarfs

19.10.2012
The community of astronomers is celebrating an amazing discovery with an international conference at Ringberg Castle nearby the Tegernsee in Germany from October 21.-24. The conference is organized by the Max Planck Institute for Astronomy in Heidelberg.

Exactly 50 years ago Shiv Kumar has theoretically predicted the existence of Brown Dwarfs, which are the link between stars and planets. It took another 30 years until these exotic objects were actually detected by observations. The origin of these mysterious objects is still not fully understood.


A disk around a young Brown Dwarf - which ejects a Jet - similar to young recently born stars (artificial image). Axel M. Quetz, MPIA / DSS-2 (Background)

All this is reason enough for renowned experts to meet on October 21.-24. in an international conference at Ringberg Castle nearby the Tegernsee. Present will be Shiv Kumar as well as the discoverers of the first Brown Dwarfs, Ben Oppenheimer, Rafael Rebolo and Gibor Basri.

Brown Dwarfs are often called failed stars because they are too cool too sustain enough nuclear fusion to shine as the sun or other stars. On the other hand, they share many properties with giant planets, such as relatively cool atmospheres in which clouds can form. The exploration of Brown Dwarfs is, therefore, a key to understand both the formation and evolution of planets as well as those of low-mass stars.

Brown dwarfs are cool

The existence of substellar objects, which do not produce enough internal energy to shine steadily for a long time, was predicted by Shiv Kumar in 1962. The term "Brown Dwarf" was proposed in 1975 by Jill Tarter, a researcher now at the SETI Institute. However, the actual color of Brown Dwarfs is rather red or magenta. Therefore, Brown Dwarfs are not only very faint, but also radiate mainly in infrared light. It required enormous technical advancements particularly in the field of infrared detectors, to allow their discovery in the mid 90s.

One of the first Brown Dwarfs discovered, Teide 1, appeared in 1994 as an unusual red object in the camera of Rafael Rebolo of the Instituto de Astrofísica de Canarias and has been confirmed by Gibor Basri as a young Brown Dwarf. An even cooler object was found in the same year by Ben Oppenheimer and Tadashi Nakajima with the Hubble Space Telescope. They were able to even detect methane in the atmosphere of this companion of the star Gl229.

The clouds that can form in the cool atmospheres of Brown Dwarfs, can consist of e.g. iron instead of water as on earth, as Christiane Helling and Mark Marley show in their model calculations. Last year, a group of astronomers around Mike Cushing has discovered the first so-called Y-Dwarfs with the WISE-satellite. With temperatures below 300 degrees, they are the coldest, free floating celestial objects detected so far.

Origin is a mystery

Due to their low mass, a star-like formation by the gravitational collapse of gas and dust clouds is not easy to explain. Nevertheless, such a scenario seems possible to some researchers. One of many alternative formation scenarios is the ejection of "stellar embryos" out of their birth place before they can grow up to real stars.

"Some observations actually indicate a star-like formation. For example, the discovery of Brown Dwarfs that have been formed in isolation or very wide Brown Dwarf binaries - both cases which do not hint at strong dynamical interactions. Furthermore, young Brown Dwarfs were found to be surrounded by disks and to drive jets and outflows – similar to young stars", explain Viki Joergens and Thomas Henning from the Max Planck Institute for Astronomy in Heidelberg (MPIA). Their team detected this years for the first time such disks at submillimeter wavelengths with the Herschel Space Telescope and also found jets with the ESOs VLT Observatory. Such disks have been also seen in the millimeter regime with ESOs ALMA Observatory by a team including Leonardi Testi.

The conference organized by Viki Joergens and Thomas Henning from MPIA entitled "50 Years of Brown Dwarfs" will provide a lively exchange between observers and theorists, and will bring together many of the world's most renowned experts working in that field.

Contact:

Dr. Viki Joergens
viki@mpia.de
Tel.: 06221 - 528 464
Tel. during the conference: 01573 - 724 2308
Prof. Dr. Thomas Henning
henning@mpia.de
Tel.: 06221 – 528 201
Dr. Klaus Jäger
jaeger@mpia.de
Tel.: 06221 – 528 379
Dr. Markus Pössel
poessel@mpia.de
Tel.: 06221 – 528 216
Further information
Brown Dwarfs have a mass of less than 75 Jupiter masses (Jupiter is the largest planet in our solar system). This means that their mass is less than one tenth of a solar mass. With a surface temperature of less than 300 to 2500°C, they are much cooler than the sun which has a surface temperature of 5500°C.

The size of Brown Dwarfs is determined by quantum mechanical effects and is about one Jupiter radius, when they have passed their "adolescence". Despite their name they are not really brown, but rather red or magenta.

How brown dwarfs form is still one of the main open questions in the theory of star formation. A key role to answer this question play brown dwarfs as members of binary and multiple systems. Steadily improving instrumental performance led to the discovery of companions around brown dwarfs down to planetary masses, to size (radii) and dynamical mass determinations, and to statistically significant samples of very low-mass binaries. These detailed empirical characterizations of brown dwarfs enable us to test and calibrate increasingly sophisticated models of internal structure, atmosphere, and formation of substellar objects.

There is evidence that even among the coldest Brown Dwarfs, called T-and Y-Dwarfs, binary systems were found. Their discovery might be published during this conference.

Dr. Klaus Jäger, Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de/homes/joergens/ringberg2012.html

More articles from Event News:

nachricht Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine
13.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Conference on Laser Polishing – LaP: Fine Tuning for Surfaces
12.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>