Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wolf mange part of nature's cycle

10.09.2012
Mange and viral diseases have a substantial, recurring impact on the health and size of reintroduced wolf packs living in Yellowstone National Park, according to ecologists.

Following the restoration of gray wolves to Yellowstone in 1996, researchers collected blood from the animals to monitor parasite-induced disease and death. They also tracked the wolves in each pack to follow their survival and allow additional data-gathering.

"Many invasive species flourish because they lack their native predators and pathogens, but in Yellowstone we restored a native predator to an ecosystem that had other canids present that were capable of sustaining a lot of infections in their absence," said Emily S. Almberg, graduate student in ecology, Penn State. "It's not terribly surprising that we were able to witness and confirm that there was a relatively short window in which the reintroduced wolves stayed disease-free."

The researchers found that within a year after the wolves were reintroduced to Yellowstone, 100 percent of the wolves tested had at least one infection, but mange did not infect wolves living in the park until 2007.

"We can look at the biology of the diseases and predict which ones will come in first," said Peter J. Hudson, Willaman Professor of Biology and director of the Huck Institutes of the Life Sciences, Penn State. "What was surprising was that so many diseases came in so fast, but those were the ones we expected to come in first. It wasn't really a sequence, they were almost there immediately. That's very interesting in itself. "

The diseases that infected the wolves quickly were all viral, including canine distemper and canine parvovirus -- both contractible through bodily secretions. Mange, however, is a skin infection, caused by scabies mites, that makes the wolves scratch and lose fur. An infected wolf can lose enough body heat in the winter to freeze to death. Mange is spread by direct contact with another mite-infected animal or by contact with the mites themselves, as they can survive away from a host for several days, depending on the temperature.

"Where did those diseases come from?" asked Hudson. "Most of them initially came from other canid species, like coyotes or foxes. Wolves are animals that disperse far and move around fast, and once the wolves were established the diseases were spread from pack to pack."

Almberg and Hudson tracked how quickly mange spread from pack to pack after the disease entered the population. The number of infected wolves in a pack did not affect the likelihood of a neighboring pack to contract mange, but distance was a factor -- for every six miles of distance between an infected pack and an uninfected pack, there was a 66 percent drop in risk for the uninfected pack. Some wolves and packs were not severely affected by mange, while other packs were decimated, the researchers report in the current issue of Philosophical Transactions of the Royal Society B.

In January 2007, Mollie's pack was the first in Yellowstone to show signs of mange infection. As of March 2011, they had recovered. The Druid pack, which had been one of the most stable and visible packs in the park, according to Almberg, started to show signs of mange in August 2009.

"It was in a very short amount of time that the majority of the animals [in Druid] became severely infected," Almberg said. "The majority of their hair was missing from their bodies and it hit them right in the middle of winter. The summer before it got really bad, we saw that many of the pups had mange."

The Druid pack was gone by the end of the winter in 2010.

The researchers note that the wolf population in Yellowstone experienced several phases -- from 1995 to 2003 the wolves experienced rapid growth, from 2003 to 2007 the number of wolves stabilized, and the most recent data from 2007 to 2010 shows a decline.

"We're down to extremely low levels of wolves right now, we're down to [similar numbers as] the early years of reintroduction," said Almberg. "So it doesn't look like it's going to be as large and as a stable a population as was maybe initially thought."

Also working on this research were Paul C. Cross, disease ecologist, Northern Rocky Mountain Science Center; Andrew P. Dobson, professor of ecology and evolutionary biology, Princeton University; and Douglas W. Smith, director, Yellowstone Wolf Project.

The research was supported through the U.S. Geological Survey/National Park Service Park-Oriented Biological Support (POBS); the Yellowstone Wolf Project of the National Park Service; and the National Institutes of Health, Research and Policy for Infectious Disease Dynamics (RAPIDD)

Victoria M. Indivero | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>