Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What the size distribution of organisms tells us about the energetic efficiency of a lake

05.06.2018

The size distribution of organisms in a lake facilitates robust conclusions to be drawn on the energy efficiency in the food web, as researchers from the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) and international colleagues have now demonstrated empirically. This relationship enables scientists to gain a better and more direct understanding of biological processes and disturbances that impact aquatic ecosystems.

Any single habitat is only able to accommodate a certain number of large organisms because these must feed on smaller creatures. In ecology, this connection is described by the trophic transfer efficiency (TTE): around ninety per cent of energy is lost from one level of the food chain to the next or, in other words, only ten per cent remain.


Divided experimental lake in Brandenburg, Germany.

Photo: TERRALAC

If, for example, a bird of prey devours a rabbit, it can use only ten per cent of the energy, which the rabbit needed to grow and live, to increase its own weight – most of the energy, then, is lost. IGB researchers have now examined how large this important model parameter actually is in natural lake ecosystems, and how it relates to the population density of organisms of different size groups.

“Of course, investigations have already been carried out into the trophic transfer efficiency and size distribution, but they were on a smaller scale than our study: we analysed all trophic levels, from bacteria to large fish,” states Dr. Thomas Mehner, lead author of the study and head of the Food Web Ecology and Fish Communities Research Group at IGB.

Available food is utilised less efficiently than expected

The researchers’ study involved investigating food webs in two small, shallow and nutrient-rich lakes in Northern Germany, each of which divided into two closed systems for a period of one year by installing a curtain through the middle of each lake. The long period of division meant that the key groups of organisms developed differently in both halves, enabling the scientists to collect data for a total of four different aquatic ecosystems.

The researchers determined the biomass and size of all organisms present in the lakes. In addition, the team computed the trophic transfer efficiency for all levels of the food chain in the lake. To achieve this, they compared primary and bacterial production with secondary production (i.e. the increase in biomass at the consumer level).

“We found out that energy efficiency is lower than is generally assumed: namely, well below ten per cent. In other words, available food is utilised much less efficiently than expected,” reports Thomas Mehner. The TTEs determined in all four lake systems were more or less equally low.

However, the predictions of the ecological theories with respect to the connection between the TTE and size distribution were confirmed: when the trophic transfer efficiency falls below ten per cent, this corresponds to an increasingly steep declining curve in the model. Consequently, the biomass of the larger organisms also declined more strongly than expected in all four lake halves. For example, the researchers counted considerably fewer consumers in the water than would be expected in the case of a higher TTE.

Using size distribution in lakes as a “tool”

The fact that the relationship between the trophic transfer efficiency and size distribution is stable opens up new possibilities concerning the investigation of aquatic ecosystems. Rather than taking great pains to identify the TTE, it presumably suffices to measure population densities and size distributions. “The trophic transfer efficiency is an important parameter, but we often do not know the size of this parameter.

We were able to show that the size distribution, which is easier to determine and more commonly applied, might be sufficient for evaluating the energetic state and efficiency of an ecosystem,” Mehner summarises the relevance of the findings. As a result, the size distribution can be used as a “tool” for gaining information such as on the impact of global warming, the invasion of alien species, habitat changes or human exploitation of ecosystem functions.

Read the study in the journal Ecology > https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecy.2347

Mehner, T. , Lischke, B. , Scharnweber, K. , Attermeyer, K. , Brothers, S. , Gaedke, U. , Hilt, S. and Brucet, S. (2018) Empirical correspondence between trophic transfer efficiency in freshwater food webs and the slope of their size spectra. Ecology, 99: 1463-1472. doi:10.1002/ecy.2347

Contacts:

PD Dr. Thomas Mehner, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department 4 Biology and Ecology of Fishes, +49 (0)30 64181 613, mehner@igb-berlin.de

Katharina Bunk, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Public Relations, +49 (0)30 641 81 631, +49 (0)170 45 49 034, bunk@igb-berlin.de

About the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB):

Work at IGB combines basic research with preventive research as a basis for the sustainable management of freshwaters. In the process, IGB explores the structure and function of aquatic ecosystems under near-natural conditions and under the effect of multiple stressors. Its key research activities include the long-term development of lakes, rivers and wetlands under rapidly changing global, regional and local environmental conditions, the development of coupled ecological and socio-economic models, the renaturation of ecosystems, and the biodiversity of aquatic habitats. Work is conducted in close cooperation with universities and research institutions from the Berlin-Brandenburg region as well as worldwide. IGB is a member of the Forschungsverbund Berlin e.V., an association of eight research institutes of natural sciences, life sciences and environmental sciences in Berlin. The institutes are members of the Leibniz Association. http://www.igb-berlin.de/en

Weitere Informationen:

http://www.igb-berlin.de/en/news/what-size-distribution-organisms-tells-us-about...

Katharina Bunk | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Success at leading conference on silicon materials science and technology in Japan

13.12.2018 | Awards Funding

NSF-supported scientists present new research results on Earth's critical zone

13.12.2018 | Earth Sciences

Barely scratching the surface: A new way to make robust membranes

13.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>