Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waters are more polluted than tests say: Standard toxicity analyses come up short

30.11.2015

Bodies of water are “sinks”, and thereby bind contaminants particularly well. If even slightly toxic concentrations in water are to be detected, the growth and swimming behavior of small crustaceans, mini-snails and copepods should be used for ecotoxicological assessments. This was the conclusion of a scientist from the TUM, who carried out a number of studies on the subject in cooperation with the University of California in Davis. She also confirmed that it is more informative to test several substances in parallel on various aquatic species, rather than only carrying out individual toxicity tests.

If a small crustacean does not grow properly, this can affect its reproduction. And if it is no longer able to move normally, it cannot flee from predators or from changing temperatures, which eventually has a fatal outcome. In scientific research, these effects are referred to as “sublethal effects”.


The scientists observed several species in the contaminated water body, including the less standard species for these tests, such as mini-snails and copepods.

Photo: Hasenbein

However, worldwide standard methods of pesticide analysis and the risk assessments associated with them only consider the lethal (deadly) effects. For the first time, three studies published in “Ecotoxicology”, “Environmental Science and Pollution Research” and “Environmental Toxicology and Chemistry” demonstrate the sublethal effects on swimming behavior and growth, caused by widely used pesticides on the animals being studied.

Moreover, the results indicate that the substances influence the underwater world for weeks, even if they are no longer detectable using standard methods.

Pesticides become more toxic as a combined package

Another factor is the mix of pesticides: “We looked at the insecticides not individually, but as a mixture, in order to investigate their interaction with one another”, explains lead author Dr. Simone Hasenbein. “In addition, we observed several species in the contaminated water body, including the less standard species for these tests, such as mini-snails and copepods.”

The tests took place over a period of ten days in the laboratory and also for six months in the field. Eventually, significantly negative effects resulting from the combined pesticide pollution in the water were found for twelve of the 15 small invertebrates and ten of the 16 zooplankton species.

“Another point that was considered was how long the insecticide remained detectable in water”, was Dr. Hasenbein’s explanation of the method – “thus, one of the three substances was still detectable after six weeks.”

A clear result delivered by a combination of study series

• Firstly, the laboratory tests provided an indication of the concentrations at which the contaminants influence the growth and swimming behavior of the organisms.
• The field studies proved the long-term effects on an entire ecosystem, its food web and its community structures.

The negative effects on aquatic ecosystems could only be pinned down once all the results were combined. Since the microorganisms being studied can be influenced by the pesticides for much longer than these substances remain detectable, this also leads to the conclusion that bodies of water are far more polluted than all previous research had demonstrated.

Sublethal effects as alarm signals

The changes in the animals which are detectable from their swimming behavior, growth or weight, and which eventually lead to their death (sublethal), are an important indicator of this. To date, however, there is no valid scale showing the point from which, for example, a delay in growth has a fatal outcome for the animal.

Therefore, study author Dr. Hasenbein is advocating this approach in particular: “Sublethal endpoints need to be integrated into the methods used in ambient water monitoring, to allow long-term negative effects on aquatic ecosystems to be detectedreliably, even when the pesticide concentrations in the water are low“, says the scientist.

“A crustacean population which is exposed to low-level contaminant pollution could be more susceptible to invasive species, changes in water temperature or different salt concentrations, because the permanent, low-level pesticide contamination increases stress on the animals.“ This is an important aspect, especially in the light of climate change, and should therefore be taken into consideration in future ecotoxicologic assessments.

Publications:

Hasenbein S, Lawler SP, Geist J, Connon RE.: A long-term assessment of pesticide mixture effects on aquatic invertebrate communities. Environmental Toxicology and Chemistry, 13.11.2015. DOI: 10.1002/etc.3187
http://onlinelibrary.wiley.com/doi/10.1002/etc.3187/full

Hasenbein S, Connon RE, Lawler SP, Geist J.: A comparison of the sublethal and lethal toxicity of four pesticides in Hyalella azteca and Chironomus dilutus, Environmental Science and Pollution Research International, 2015 Aug;22(15):11327-39. doi: 10.1007/s11356-015-4374-1. http://link.springer.com/article/10.1007%2Fs11356-015-4374-1

Hasenbein S, Lawler SP, Geist J, Connon RE: The use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms. Ecotoxicology 24:746-759, 29.01.2015. DOI: 10.1007/s10646-015-1420-1
http://www.ncbi.nlm.nih.gov/pubmed/25630500

Contact:
Dr. Simone Hasenbein
Technical University of Munich
Chair of Aquatic Systems Biology/
University of California Davis, Dept. of Anatomy, Physiology and Cell Biology
Tel: +1 530 752 3141
Email: shasenbein@ucdavis.edu

Prof. Dr. Jürgen Geist
Chair of Aquatic Systems Biology
Department of Ecology and Ecosystem Management
Mühlenweg 22
D-85354 Freising
Germany
Tel.: +49/8161/71.3947
Email: geist@wzw.tum.de

Weitere Informationen:

http://www.tum.de/en/about-tum/news/press-releases/short/article/32771/

Dr. Ulrich Marsch | Technische Universität München

More articles from Ecology, The Environment and Conservation:

nachricht 5000 tons of plastic released into the environment every year
12.07.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Climate impact of clouds made from airplane contrails may triple by 2050
27.06.2019 | European Geosciences Union

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>