Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waste in the water – New purification techniques for healthier aquatic ecosystems

24.07.2018

Evolutionary biologists from the University of Tübingen investigate how water treatments affect fish

Even tiny amounts of toxins in rivers and lakes can endanger aquatic organisms. The public has become more aware of this environmental problem in recent years. Trace amounts of toxins found in our waterways are included in many of the things we use every day – dishwasher tablets, washing powder and shower gel – as well as pharmaceuticals, cosmetics, and pesticides.


Scientists taking samples from the fish in the cage

Photo: Rita Triebskorn


The researchers kept rainbow trout in a special cage in the waters they were analyzing.

Photo: Rita Triebskorn

These substances are in household wastewater and are transported to wastewater treatment plants, where conventional techniques cannot completely remove or degrade them. The treated wastewater flows into our streams, taking the toxins with it.

A group of researchers headed by the University of Tübingen’s Professor Rita Triebskorn has been investigating the effects of various wastewater treatments on the health of fish. The scientists, from the Institute of Evolution and Ecology (EvE), found that the type of wastewater treatment needs to be decided on a case by case basis, depending on the composition of toxins in the wastewater. Their study has been published in the journal Environmental Sciences Europe.

In conventional wastewater treatment plants the wastewater from industry and private households runs through mechanical, biological, and chemical purification stages. Additional stages using activated carbon or ozonisation are increasingly being included as a fourth purifcation stage.

“As part of an investigation on Lake Constance we were able to show that trace toxins can be effectively removed with an additional stage of powdered activated carbon, and that the health of aquatic organisms in the area clearly improves,” says Rita Triebskorn. “But until now there have been relatively few studies on the long-term success of improved wastewater treatment on water ecosystems.”

Standardized experimental conditions

In their comparative experiments the researchers looked at three conventional wastewater treatment plants – one of which, the Langwiese plant in the Ravensburg district, had an activated carbon stage installed during the study. The biologists placed cages into the water above and below the place where treated water from the plant flowed into the river.

“Compared with the examination of wild fish, this has the advantage that we can standardize the fish characteristics such as age, diet and stage of development. This means we can better recognize any effects on the health of the animals,” says team member and the study’s corresponding author, Sabrina Wilhelm. Established methods were used to find out whether the rainbow trout cell nuclei showed signs of increased genotoxicity. And the livers of the fish were examined to determine whether they were having to work harder to remove or break down toxins.

Case-by-case decisions

“While we didn’t find negative effects of trace toxins on fish health in one of the conventional water treatment plants, the rainbow trout below the second conventional plant had much higher critical liver values,” Sabrina Wilhelm says. “We also saw these negative effects at the Langwiese plant before the installation of the fourth stage.” She adds that the activated carbon stage clearly reduced the high liver values and the genotoxicity in the fish.

“Investing in modern water purification techniques are a boon to aquatic ecosystems particularly when conventional technologies don’t do enough to reduce the levels of toxins,” Rita Triebskorn says. “However, depending on the composition of the wastewater, negative effects on aquatic organisms can also be reduced by optimizing conventional wastewater purification.” The bottom line is that it is worth investing in good wastewater purification for sustainable protection of our environment.

Wissenschaftliche Ansprechpartner:

Professor Dr. Rita Triebskorn
University of Tübingen
Institute of Evolution and Ecology
Phone +49 7071 29-78892
rita.triebskorn[at]uni-tuebingen.de

Originalpublikation:

Sabrina Wilhelm, Stefanie Jacob, Michael Ziegler, Heinz-R. Köhler, Rita Triebskorn: Which kind of wastewater treatment do we need to avoid genotoxicity and dioxin-like toxicity in effluent-exposed fish?. Environmental Sciences Europe, https://doi.org/10.1186/s12302-018-0154-0.

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-tuebingen.de/

More articles from Ecology, The Environment and Conservation:

nachricht Plant seeds survive machine washing - Dispersal of invasive plants with clothes
11.09.2018 | Gesellschaft für Ökologie e.V.

nachricht Air pollution leads to cardiovascular diseases
21.08.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Why it doesn’t get dark when you blink

25.09.2018 | Life Sciences

Genome Duplication Drives Evolution of Species

25.09.2018 | Life Sciences

Desert ants have an amazing odor memory

25.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>