Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming climate pushes plants up the mountain

15.08.2013
Comparing plant communities today with a survey taken 50 years ago, University of Arizona-led research provides the first on-the-ground evidence for Southwestern plants being pushed to higher elevations by an increasingly warmer and drier climate

In a rare opportunity to directly compare plant communities in the same area now with a survey taken 50 years ago, a University of Arizona-led research team has provided the first on-the-ground evidence that Southwestern plants are being pushed to higher elevations by an increasingly warmer and drier climate.


The researchers assessed plants growing at different elevations in the same areas surveyed by botanists 50 years ago.

Credit: Jeffrey Eble

The findings confirm that previous hypotheses are correct in their prediction that mountain communities in the Southwest will be strongly impacted by an increasingly warmer and drier climate, and that the area is already experiencing rapid vegetation change.

In a rare opportunity to obtian a "before – after" look, researchers studied current plant communities along the same transect already surveyed in 1963: the Catalina Highway, a road that winds all the way from low-lying desert to the top of Mount Lemmon, the tallest peak in the Santa Catalina Mountains northeast of Tucson.

"Our study provides the first on-the-ground proof of plants being forced significantly upslope due to climate warming in southern Arizona," said Richard C. Brusca, a research scientist in the UA's department of ecology and evolutionary biology who led the study together with Wendy Moore, an assistant professor in the UA's department of entomology. "If climate continues to warm, as the climate models predict, the subalpine mixed conifer forests on the tops of the mountains – and the animals dependent upon them – could be pushed right off the top and disappear."

The study, published in the journal Ecology and Evolution, was made possible by the existence of a dataset compiled 50 years ago by Robert H. Whittaker, often referred to as the "father of modern plant ecology," and his colleague, William Niering, who catalogued the plants they encountered along the Catalina Highway.

Focusing on the 27 most abundantly catalogued plant species, Brusca and Moore discovered that three quarters of them have shifted their range significantly upslope, in some cases as much as a thousand feet, or now grow in a narrower elevation range compared to where Whittaker and Niering found them in 1963.

Specifically, Moore and her team found that the lowermost boundaries for 15 of the species studied have moved upslope; eight of those species now first appear more than 800 feet higher than where Whittaker and Niering first encountered them. Sixteen of the studied species are now restricted to a narrower band of elevation, the researchers noticed. As far as the plants' upper elevation limits were concerned, the researchers observed a mixed trend: They found it to be higher for four species, lower for eight species and unchanged for 15.

For example, in 1963 Whittaker and Niering recorded alligator juniper as a component of upland desert and grassland communities in the Catalina Mountains, beginning at an elevation of just 3,500 feet. Today, one has to drive to the 5,000-foot elevation marker on the Catalina Highway to see the first live alligator juniper trees in upland habitats.

According to the authors, the main point emerging from the study is that plant communities on the mountain were different 50 years ago because plant species do not necessarily move toward higher elevations as a community. Rather, individual species shift their ranges independently, leading to a reshuffling of plant communities.

The scientists in this multidisciplinary group gathered the data during fieldwork in 2011, and included UA postdoctoral fellows and professors from several programs, including the UA departments of entomology and ecology and evolutionary biology, the Center for Insect Science and the Institute for the Environment, as well as botanists from the Arizona-Sonora Desert Museum.

Based on studies done by other scientists, including UA researchers, the researchers believe that a "thirstier" atmosphere might be a major driver behind the shifts in plant distribution, possibly even more so than lack of precipitation. As the atmosphere becomes warmer and drier, plants loose more water through their leave openings and become water-stressed.

According to the authors, the results are consistent with a trend scientists have established for the end of the Pleistocene, a period of repeated glaciations that ended about 12,000 years ago. By studying the distribution of plant seeds and parts preserved in ancient packrat middens, for example, paleo-ecologists have documented that as the climate warmed up, plant communities changed profoundly.

"In southern Arizona, some species moved north to the Colorado Plateau, others moved up mountain slopes, and others didn't move at all," said Moore, who has been collecting data on ground-dwelling arthropods, plants, leaf litter, weather, soil, and other ecological factors in the Santa Catalina Mountains for the Arizona Sky Island Arthropod Project based in her lab.

The Sky Islands encompass an "archipelago" of 65 isolated mountain ranges rising from the surrounding low-elevation desert and desert grassland in an area that constitutes the only major gap in the 4,500-mile long North American Cordillera, which runs from northern Alaska to southern Mexico. The Sky Islands, often referred to as the "Madrean Sky Islands," span this gap in southeastern Arizona, southwestern New Mexico and northeastern Sonora, Mexico. They include the Santa Catalina Mountains, the Pinal Mountains and the Chiricahua Mountains.

Research publication: http://onlinelibrary.wiley.com/doi/10.1002/ece3.720/abstract

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>