Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer environment means shorter lives for cold-blooded animals

29.07.2009
Stony Brook University researchers show temperature explains much of the geographic variation in lifespan within species

Temperature explains much of why cold-blooded organisms such as fish, amphibians, crustaceans, and lizards live longer at higher latitudes than at lower latitudes, according to research published this week in the Proceedings of the National Academy of Sciences (PNAS) online.

Assistant Professor Dr. Stephan Munch and Ph.D. candidate Santiago Salinas, both of Stony Brook University's School of Marine and Atmospheric Sciences (SoMAS), found that for a diverse range of species whose body temperatures vary with the temperature of their surroundings, ambient temperature is the dominant factor controlling geographic variation of lifespan within species.

"We were intrigued by the fact that that pearl mussels in Spain have a maximum lifespan of 29 years, while in Russia, individuals of the same species live nearly 200 years," said Dr. Munch. "We wondered how a relatively small difference in latitude (Spain 43ºN and Russia 66ºN) could have such a drastic impact on lifespan. While one might expect that local adaptations or geographic variations in predator and food abundance would account for this disparity, we wanted to see whether the geographical variation in lifespan that we see in all sorts of species has a common physiological basis in temperature."

Munch and Salinas looked at lifespan data from laboratory and field observations for over 90 species from terrestrial, freshwater, and marine environments. They studied organisms with different average longevities--from the copepod Arcartia tonsa, which has an average lifespan of 11.6 days, to the pearl mussel Margaritifera margaritifera, which has an average lifespan of 74 years. They found that across this wide range of species, temperature was consistently exponentially related to lifespan.

The relationship between temperature and lifespan that Munch and Salinas found through data analysis was strikingly similar to the relationship that the metabolic theory of ecology (MTE) predicts. The MTE is a modeling framework that has been used to explain the way in which life history, population dynamics, geographic patterns, and other ecological processes scale with an animal's body size and temperature.

"You can think of an animal as a beaker in which chemical reactions are taking place," said Salinas. "The same rules that apply to a liquid inside a beaker should apply to animals. Chemists have a relationship for how an increase in temperature will speed up reaction rates, so the MTE borrows that relationship and applies it--with some obvious caveats--to living things."

The lifespan in 87% of the free-living species Munch and Salinas studied varied as predicted by the MTE. Yet after removing the effect of temperature, there was still considerable variation in lifespan within species, indicating that other, local factors still play a role in determining lifespan.

"It is interesting to consider how cold-blooded species are likely to react in the face of global warming," said Salinas. "Because of the exponential relationship between temperature and lifespan, small changes in temperature could result in relatively large changes in lifespan. We could see changes to ecosystem structure and stability if cold-blooded species change their life histories to accommodate warmer temperatures but warm-blooded species do not."

Leslie Taylor | EurekAlert!
Further information:
http://www.sunysb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>