Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warm winters let trees sleep longer

30.10.2013
Climate change alters timing of spring growth in forests

In the temperate zones, vegetation follows the change of the seasons. After a winter pause, plants put out new growth in spring. Research has now brought a new correlation to light: The colder the winter, the earlier native plants begin to grow again.


For their experiments, TUM researchers used twigs around 30 centimeters long from 36 different trees and shrubs, which they exposed to different temperature and light conditions in climate chambers. Each climate chamber experiment lasted six weeks. The twigs came from the "Weltwald" or "World Forest" near Freising, Germany, in which Bavarian state foresters have planted stands of trees from different climate regions.

Credit: Photo by Julia Laube Copyright TU Muenchen

Since warmer winters can be expected as the climate changes, the spring development phase for typical forest trees might start later and later – giving an advantage to shrubs and invasive trees that don't depend on the cold.

In a recently published study, researchers at the Technische Universitaet Muenchen (TUM) investigated 36 tree and shrub species. Their work delivered a surprising result, as lead author Julia Laube explains: "Contrary to previous assumptions, the increasing length of the day in spring plays no big role in the timing of budding. An ample 'cold sleep' is what plants need in order to wake up on time in the spring."

This applies above all to native tree species such as beech and oak, because they rely on resting in the cold to protect themselves from freezing by late spring frosts. A different behavior is observed among pioneer species – including shrubs such as hazel bushes and primary settlers such as birch trees – and among species like locust and walnut that have moved in from warmer climate zones. "These trees take the risk of starting earlier in the spring, because they are less strongly dependent on the cold periods," Laube says, "and in addition they sprout more quickly as temperatures rise."

Advantage for shrubs and new tree species

There may be consequences for the forest ecosystem. After mild winters, the native species run a higher risk of developing their leaves too late. In that case, more daylight reaches the forest floor, and that benefits lower-growing shrubs and invasive tree species. They sprout earlier, to the detriment of native species: Young trees for example, still low to the ground, may not receive the light they need to grow.

"Even under warmer conditions, we won't be seeing 'green Christmases' under freshly blooming trees," says Prof. Annette Menzel, TUM Chair for Ecoclimatology and a fellow of the TUM Institute for Advanced Study. "Nonetheless, the differing growth patterns will affect the entire plant and animal world. The native tree species in our forests have only a limited ability to adapt themselves to climate change."

Shortened winter in the climate chamber

For their experiments, the researchers used twigs around 30 centimeters long from 36 different trees and shrubs, which they exposed to different temperature and light conditions in climate chambers. Each climate chamber experiment lasted six weeks. The twigs came from the "Weltwald" or "World Forest" near Freising, in which Bavarian state foresters have planted stands of trees from different climate regions.

The cold effect showed most strongly with the beeches, the hornbeams, and the North American sugar maple. With shortened cold periods, bud burst occurred significantly later. In contrast, the lilac, the hazel bush, and the birch proved to be less dependent on the cold.

"Overall, however, a chaotic picture emerges," Menzel adds. "Through warmer winters, the usual sequence of leaf development can get completely mixed up. Many of the cultivated species that are at home today in central Europe come originally from warmer climate zones. In the absence of adequate protection against freezing, they could become victims of their own too-flexible adaptation – and freeze to death in a late frost in the spring."

Publication:

Chilling outweighs photoperiod in preventing precocious spring development; Julia Laube, Tim H. Sparks, Nicole Estrella, Josef Höfler, Donna P. Ankerst and Annette Menzel; Global Change Biology (Oct. 30, 2013), doi: 10.1111/gcb.12360

Contact:

Prof. Dr. Annette Menzel
Technische Universitaet Muenchen
Chair of Ecoclimatology
T: +49.8161.71.4740
E: amenzel@wzw.tum.de
W: http://www.oekoklimatologie.wzw.tum.de
Technische Universitaet Muenchen (TUM) is one of Europe's leading research universities, with around 500 professors, 10,000 academic and non-academic staff, and 35,000 students. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, reinforced by schools of management and education. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with a campus in Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel and Carl von Linde have done research at TUM. In 2006 and 2012 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany.

Barbara Wankerl | EurekAlert!
Further information:
http://www.tum.de

More articles from Ecology, The Environment and Conservation:

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>