Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses linked to algae that control coral health

12.07.2012
Scientists have discovered two viruses that appear to infect the single-celled microalgae that reside in corals and are important for coral growth and health, and they say the viruses could play a role in the serious decline of coral ecosystems around the world.

These viruses, including an RNA virus never before isolated from a coral, have been shown for the first time to clearly be associated with these microalgae called Symbiodinium. If it's proven that they are infecting those algae and causing disease, it will be another step toward understanding the multiple threats that coral reefs are facing.

The research was published today in the ISME Journal, in work supported by the National Science Foundation.

"We're way behind in our knowledge of how viral disease may affect coral health," said Adrienne Correa, a researcher with the Department of Microbiology at Oregon State University. "If viral infection is causing some bleaching, it could be important in the death of corals and contribute to reef decline. This potential threat from viruses is just starting to be recognized."

Corals co-exist with these algae in a symbiotic relationship, scientists say, in which the algae provide energy to the coral, and contribute to the construction of reefs. The coral in turn offers a place for the algae to live and provides nutrients for it.

Corals and viruses have evolved along with their resident algae for millions of years. They have persisted through previous climate oscillations, and the presence of viruses within corals or their algae doesn't necessarily indicate they are affecting coral colony health. If viruses are causing disease or bleaching of colonies, it's also unknown whether this is happening now more than in the past.

"Corals are known to face various environmental threats, such a warming temperatures, competition and pollution," Correa said. "Some of the environmental changes of the past were likely more gradual and allowed the coral and its associates more time to adapt.

"The stresses challenging coral reefs now are more intense and frequent," she said. "This may mean viruses cause more problems for corals and their algae now than they did historically."

In continued research at OSU, scientists will inoculate Symbiodinium with the viruses and try to prove they are causing actual disease. If the viruses are killing the algae, scientists said, it could have significant implications for coral reef health and survival. There are almost two dozen known diseases that are affecting coral, and scientists still do not know the cause of most of them.

Coral abundance has declined about 80 percent in the Caribbean Sea in the past 30-40 years, and about one-third of all corals around the world are threatened with extinction.

Editor's Note: A digital image of bleached coral is available online: http://bit.ly/L6w0x8

Adrienne Correa | EurekAlert!
Further information:
http://www.oregonstate.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Emissions from road construction could be halved using today’s technology
18.05.2020 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht When every particle counts: IOW develops comprehensive guidelines for microplastic extraction from environmental samples
11.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New technology can detect anti-virus antibody in 20 minutes

25.05.2020 | Medical Engineering

ATLAS telescope discovers first-of-its-kind asteroid

25.05.2020 | Physics and Astronomy

Researchers develop high-performance cancer vaccine using novel microcapsules

25.05.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>