Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using sphere packing models to explain the structure of forests

26.11.2015

Explaining the complex structure of tropical forests is one of the great challenges in ecology. An issue of special interest is the distribution of different sizes of trees, something which is of particular relevance for biomass estimates. Modellers from the UFZ, working together with research partners, has now developed a new method which can be used to explain the tree size distribution in natural forests. To do so, the scientists use principles from stochastic geometry, as they have reported in a contribution to the Proceedings of the National Academy of Sciences of the United States of America (PNAS, Early Edition).

For over one hundred years, the distribution of different sizes of trees in forests has been one of the core attributes recorded by foresters and ecologists world-wide, as it can be used to derive many other structural features, such as biomass and productivity. "We wanted to explain this important pattern", said Dr. Franziska Taubert.


Image showing tightly packed tree crowns in a natural tropical forest, for investigating the forest's structure. Tree crowns of different sizes are shown as spheres.

André Künzelmann/UFZ

Working with her UFZ colleagues Dr. Thorsten Wiegand and Prof. Andreas Huth, and other research partners in the Leipzig University of Applied Sciences (HTWK) and the Karlsruhe Institute of Technology (KIT), they have applied the theory of stochastic sphere packing, which is usually used in physics or chemistry. This theory describes how spheres can be placed in an available space.

To apply the theory, the scientists randomly distributed tree crowns of different sizes in forest areas. These tree crowns were not permitted to overlap, - just like packing apples into a box. The distribution of the trees that have been successfully placed in the packing process was then used to determine the tree size distribution.

"Many forest models are based on a dynamic approach: they take into account processes such as growth, mortality, regeneration and competition between trees for light, water and soil nutrients", said Taubert. "These models are complex and data-hungry", added Thorsten Wiegand," so we decided to take a radically different approach, which is fundamentally simpler and only based on spatial structures".

This model approach proved its effectiveness by enabling observed forest structures, especially the tree size distribution, to be reproduced accurately. The rules of stochastic geometry are thereby enriched by tree geometry relationships, and the resulting tree packing system is compared to inventory data from tropical forests in Panama and Sri Lanka.

Although one might imagine that a tropical forest is very tightly packed, the scientists came to a surprising conclusion: the packing density of the tree crowns, which averages 15 to 20%, is astonishingly low. "In particular, the upper and lower canopy levels are less tightly packed with tree crowns", said Taubert. High packing densities of around 60%, which are also possible according to stochastic geometry, only occur at tree heights between 25 and 40 meters.

The findings concerning the distribution of tree crowns are important, because they can be used to draw conclusions about, for example, the carbon content or productivity of a forest. Using this modelling approach, the researchers were also able to show that the decisive factor in shaping the tree size distribution is competition for space. "In classical forest models", said Andreas Huth, "the trees instead compete for light, or water and nutrients".

The theory opens up several new perspectives. The team plans to assess how the model can be applied to natural forests in the temperate and boreal zone. They believe that the model can be used to identify disturbed forests. "That is of special interest because it will enable us to develop a disturbance index", said Taubert, “and to better interpret remote sensing observations by using the structure of natural forests as a reference”. Another benefit of the new theory is that this simple forest packing model takes much less effort than classical forest models. The new approach is an important step toward identifying a minimal set of processes responsible for generating the spatial structure of natural forests.

Publication:
Franziska Taubert, Markus Wilhelm Jahn, Hans-Jürgen Dobner, Thorsten Wiegand and Andreas Huth: "The structure of tropical forests and sphere packings". Proceedings of the National Academy of Sciences of the United States of America (PNAS). http://www.pnas.org/cgi/doi/10.1073/pnas.1513417112

Institutions involved:
Helmholtz Centre for Environmental Research – UFZ, Leipzig University of Applied Sciences (HTWK), Karlsruhe Institute of Technology (KIT), German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, University of Osnabrück.
The researchers thank the Advanced Grant of the European Research Council (ERC) for their support.

Further information
Dr. Franziska Taubert
UFZ Department of Ecological Modelling
Phone: +49 341 235-1896
franziska.taubert@ufz.de

Prof. Dr. Andreas Huth
Head of UFZ Department of Ecological Modelling
Phone: +49 341 235-1719
andreas.huth@ufz.de

Weitere Informationen:

http://www.ufz.de/index.php?en=36792

Susanne Hufe | Helmholtz-Zentrum für Umweltforschung - UFZ

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>