Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unprecedented, man-made trends in ocean's acidity

23.01.2012
Nearly one-third of CO2 emissions due to human activities enters the world's oceans.

By reacting with seawater, CO2 increases the water's acidity, which may significantly reduce the calcification rate of such marine organisms as corals and mollusks.

The extent to which human activities have raised the surface level of acidity, however, has been difficult to detect on regional scales because it varies naturally from one season and one year to the next, and between regions, and direct observations go back only 30 years.

Combining computer modeling with observations, an international team of scientists concluded that anthropogenic CO2 emissions over the last 100 to 200 years have already raised ocean acidity far beyond the range of natural variations. The study is published in the January 22 online issue of Nature Climate Change.

The team of climate modelers, marine conservationists, ocean chemists, biologists and ecologists, led by Tobias Friedrich and Axel Timmermann at the International Pacific Research Center, University of Hawaii at Manoa, came to their conclusions by using Earth system models that simulate climate and ocean conditions 21,000 years back in time, to the Last Glacial Maximum, and forward in time to the end of the 21st century. They studied in their models changes in the saturation level of aragonite (a form of calcium carbonate) typically used to measure of ocean acidification. As acidity of seawater rises, the saturation level of aragonite drops. Their models captured well the current observed seasonal and annual variations in this quantity in several key coral reef regions.

Today's levels of aragonite saturation in these locations have already dropped five times below the pre-industrial range of natural variability. For example, if the yearly cycle in aragonite saturation varied between 4.7 and 4.8, it varies now between 4.2 and 4.3, which – based on another recent study – may translate into a decrease in overall calcification rates of corals and other aragonite shell-forming organisms by 15%. Given the continued human use of fossil fuels, the saturation levels will drop further, potentially reducing calcification rates of some marine organisms by more than 40% of their pre-industrial values within the next 90 years.

"Any significant drop below the minimum level of aragonite to which the organisms have been exposed to for thousands of years and have successfully adapted will very likely stress them and their associated ecosystems," says lead author Postdoctoral Fellow Tobias Friedrich.

"In some regions, the man-made rate of change in ocean acidity since the Industrial Revolution is hundred times greater than the natural rate of change between the Last Glacial Maximum and pre-industrial times," emphasizes Friedrich. "When Earth started to warm 17,000 years ago, terminating the last glacial period, atmospheric CO2 levels rose from 190 parts per million (ppm) to 280 ppm over 6,000 years. Marine ecosystems had ample time to adjust. Now, for a similar rise in CO2 concentration to the present level of 392 ppm, the adjustment time is reduced to only 100 – 200 years."

On a global scale, coral reefs are currently found in places where open-ocean aragonite saturation reaches levels of 3.5 or higher. Such conditions exist today in about 50% of the ocean – mostly in the tropics. By end of the 21st century this fraction is projected to be less than 5%. The Hawaiian Islands, which sit just on the northern edge of the tropics, will be one of the first to feel the impact.

The study suggests that some regions, such as the eastern tropical Pacific, will be less stressed than others because greater underlying natural variability of seawater acidity helps to buffer anthropogenic changes. The aragonite saturation in the Caribbean and the western Equatorial Pacific, both biodiversity hotspots, shows very little natural variability, making these regions particularly vulnerable to human-induced ocean acidification.

"Our results suggest that severe reductions are likely to occur in coral reef diversity, structural complexity and resilience by the middle of this century," says co-author Professor Axel Timmermann."

An animation showing the changes in aragonite surface saturation level from 1800 to 2100 is available at http://iprc.soest.hawaii.edu/users/tobiasf/Outreach/OA/Ocean_Acidification.html. The animation is also playing at the Science on a Sphere in the Jhamandas Watumull Planetarium at the Bishop Museum in Honolulu.

This study was funded by The Nature Conservancy (www.nature.org), the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) through its sponsorship of the International Pacific Research Center, and National Science Foundation grant #0902551.

Citation: T. Friedrich, A. Timmermann, A. Abe-Ouchi, N. R. Bates, M. O. Chikamoto, M. J. Church, J. E. Dore, D. K. Gledhill, M. González-Dávila, M. Heinemann, T. Ilyina, J. H. Jungclaus, E. McLeod, A. Mouchet, and J. M. Santana-Casiano: Detecting regional anthropogenic trends in ocean acidification against natural variability. Nature Climate Change - DOI: 10.1038/NCLIMATE1372.

Researcher contacts:
Friedrich, Tobias: International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii; (808) 956-7385; Email: tobiasf@hawaii.edu

Timmermann, Axel: International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii (808) 956-2720; Email axel@hawaii.edu

International Pacific Research Center Media Contact: Gisela E. Speidel (808)956-9252; Email gspeidel@hawaii.edu

Gisela Speidel | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Ecology, The Environment and Conservation:

nachricht Road access for all would be costly, but not so much for the climate
10.07.2020 | Potsdam-Institut für Klimafolgenforschung

nachricht Innovative grilling technique improves air quality
01.07.2020 | Fraunhofer Institute for Building Physics IBP

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>