Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UM-led research team contributes to the management of South Florida coastal environments

21.07.2014

Collaborative research team publishes findings in special issue of Ecological Indicators

A Florida-based marine research team has developed a unique formal process and modeling framework to help manage South Florida's economically important coastal marine environments. The MARES project (Marine and Estuarine Goal Setting), led by the National Oceanic and Atmospheric Administration's (NOAA) Cooperative Institute for Marine and Atmospheric Studies (CIMAS) based at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, successfully integrated both ecosystem science and societal benefits into a marine ecosystem support tool to help improve decision-making by natural resource managers.


This is a map of the South Florida coastal ecosystem studied during the MARES project.

Credit: Pamela Fletcher, Florida Sea Grant

The research team published their findings in 15 research papers in a special issue of the journal of Ecological Indicators - Volume 44, entitled: "Tools to support ecosystem based management of South Florida's coastal resources." The results have been incorporated into the revised Guidance Document for the National Marine Sanctuaries' Condition Reports and are being used by the Our Florida Reefs community working groups, the National Parks Service, NOAA's Integrated Ecosystem Assessment efforts, and in undergraduate courses at Florida universities and colleges.

"One of the important aspects of this new suite of tools, which includes conceptual info-graphics, integrated ecosystem models and both human and ecological indicators, is that it's exportable technology," said Peter Ortner, UM Rosenstiel Research Professor and Director of CIMAS. "It can be applied directly to the management of other coastal ecosystems."

A MARES program for coastal North Carolina is under consideration and a full-day workshop on MARES will be held at next December's "Linking Science, Practice and Decision Making" conference in Washington, DC. The NOAA/Climate Program Office has recently announced an award to CIMAS applying the MARES framework entitled "Developing decision support tools for understanding, communicating, and adapting to the impacts of climate on the sustainability of coastal ecosystem services."

South Florida has one of the most diverse ocean and coastal ecosystems in the United States, and is economically important to the local and state economy for tourism, commercial and recreational fishing, SCUBA diving, and other ocean-related jobs. The South Florida marine environment has degraded over the last century due to upstream and local human activity and coastal development. Sea-level rise and climate change are additional stressors that will put the long-term health of South Florida's valuable coastal resources at further risk over the coming century.

The study team, which included over 50 researchers from academia, state and federal government, was comprised of ecological scientists as well as "human dimension" scientists, such as economists, sociologists, and cultural anthropologists to evaluate the societal aspects of ecosystem management and protection. The coastal region studied included the waters from Martin County south to the Florida Keys and Dry Tortugas, the Southwest marine environment in the Gulf of Mexico from Lee County south to Florida Bay.

"Our large, collaborative team developed a conceptual modeling framework that explicitly focuses on the benefits humans receive from the ecosystem," said Ortner. "The framework includes ecological indicators as well as human dimensions indicators to assess the level of services human society is receiving and wishes to continue to receive from the ecosystem, such as recreational opportunity and economic gain."

The new conceptual framework allows natural resource managers to track how the ecological and human requirements are being satisfied and provides a flexible highly adaptive approach that allows for pubic involvement in the decision-making process. The MARES process is designed to reach a science-based consensus on the defining characteristics and fundamental regulatory processes of a coastal marine ecosystem that are both sustainable and capable of providing the diverse ecosystem services upon which our society depends. MARES was funded by the NOAA National Centers for Coastal Ocean Science

###

About the University of Miami's Rosenstiel School The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit http://www.rsmas.miami.edu

Diana Udel | Eurek Alert!

Further reports about: Atmospheric CIMAS Miami NOAA ecological ecosystem environments natural resources

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>