Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UConn researchers discover that 'red tide' species is deadlier than first thought

24.07.2012
Plankton species produces not 1, but 2, deadly toxins

A University of Connecticut researcher and his team have discovered that a species of tiny aquatic organism prominent in harmful algal blooms sometimes called "red tide" is even deadlier than first thought, with potential consequences for entire marine food chains.

Professor Hans Dam and his research group in the school's Department of Marine Sciences have discovered that the plankton species Alexandrium tamarense contains not one but two different types of toxins, one that's deadly to large organisms and one that's deadly to small predators.

"If it's killing multicellular animals with one toxin and small protists with another, it could be the killer of the ocean world," he says.

Dam speculates that this ability to harm both large and small oceanic predators could lead to disruptions in the marine food web during large Alexandrium blooms, like the red tide that occurred along the Northeast coast in 2005, severely affecting the Cape Cod area.

"These small predators that are being affected by the reactive oxygen species are the things that typically eat large amounts of the algae and keep them from growing like crazy," says Dam. "This brings up a whole new line of inquiry for us: What will actually control these algae in the future?"

In small numbers, Alexandrium are virtually harmless to humans, says Dam. But when they're eaten by other clams, mussels or other microorganisms – which are then eaten by small crustaceans, which are in turn eaten by larger crustaceans or fish – the toxins can build up in large amounts. So in some parts of the world, eating contaminated shellfish, such as lobsters, clams and fish, has led to illness or death.

However, says Dam, that toxin only affects animals that have central nervous systems.

"This toxin blocks sodium channels in anything that has a well-developed nervous system," he says. "But most of the organisms in the ocean are not those kinds of organisms. They're single-celled, similar to the algae themselves, and they don't have a well-developed nervous system."

Scientists had begun to notice that even though Alexandrium's toxin isn't supposed to affect single-celled animals, when the algae was in the vicinity of some of its one-celled predators, some of those predators got sick and died. Dam's post-doctoral researcher Hayley Flores showed in laboratory experiments that in fact the alga produces a different toxin, called a reactive oxygen species, that kills their predators by popping their cell membrane.

"If you only have one cell, lysing your cell membrane is all it takes to kill you," says Dam. "This new mechanism of toxicity, combined with the other, is pretty evil."

Dam notes that although harmful algal blooms have been linked to human activities, such as pollution runoff from rivers, there are many different factors that could affect the blooms, and scientists still aren't sure exactly how they begin. He speculates that the algae may have become more toxic over time, which has led to their proliferation.

His group will next try to understand how the alga produces the reactive oxygen species and whether it also affects animals multicellular animals. He's also working with researchers at the University of Los Lagos in Chile to understand how Alexandrium may affect important commercial species such as salmon and king crab

"The amazing thing is, when you look at these algae under a microscope, they're so beautiful – but they're so deadly," says Dam. "We call them the beautiful assassins."

Tom Breen | EurekAlert!
Further information:
http://www.uconn.edu

More articles from Ecology, The Environment and Conservation:

nachricht Plant seeds survive machine washing - Dispersal of invasive plants with clothes
11.09.2018 | Gesellschaft für Ökologie e.V.

nachricht Air pollution leads to cardiovascular diseases
21.08.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>