Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Translocation risks revealed

27.04.2012
Scientists develop techniques to avoid repeat of red squirrel catastrophe

DISASTROUS disease outbreaks like the one which led to the decimation of the red squirrel in Britain can now be avoided through the implementation of new preventive measures developed by UK scientists.

Researchers at the Zoological Society of London (ZSL) looked at the disease risks associated with moving wild animals (translocation), and worked out the key baseline data required to predict the outcome of wild animals being moved around.

Translocations are being increasingly used to conserve species whose numbers have plummeted as a result of habitat degradation and other human factors. Climate change is likely to lead to the need for many more translocations to ensure animals are located in favourable habitat.

There are numerous historical examples of translocations introducing disease to native populations. Following the accidental introduction of the rinderpest virus to Africa with translocated cattle in the 1890s the number of wildebeest in the Serengeti fell dramatically, leading to a subsequent fall in two important predator species - lion and hyena.

In the UK the introduction of the squirrelpox virus with the North American grey squirrel in the late 19th century caused fatal disease in red squirrels, contributing to their mass decline.

At the planning stages of the proposed translocation of Eurasian cranes (Grus grus) from Germany to the UK, called The Great Crane Project, the researchers used their new analytical method to assess the risk of disease.

The research team investigated the parasites harboured by the source population of cranes in Germany, captive cranes held in the UK, and the existing small population of cranes present in the UK. From those investigations they identified 24 potential translocation hazards. The threat of these disease hazards, which included nematode worms and avian influenza, was ranked.

By applying the kind of risk analysis already used to estimate risks to humans from sources as diverse as car accidents, radioactivity and cancer, the team investigated the probability and magnitude of effects from the 24 disease hazards at all stages of the translocation route including those triggered by stressors such as capture, those induced by parasites brought into the UK and those by parasites harboured by native species at the destination. This analysis has guided careful disease risk planning and implementation throughout the Great Crane Project and contributed to its current success.

Lead author Tony Sainsbury said: "This project has demonstrated that we have a feasible method to assess the risks of disease to translocations before they take place, which is very important if we are to avoid a catastrophe like that which has virtually wiped out the red squirrel in the UK."

This new method of risk analysis is now used on all reintroduction programmes in Natural England's Species Recovery Programme. This approach is necessary whether the origin of the species are ex-situ populations destined for re-introductions, re-introduced populations or wild populations. This risk analysis process allows Natural England to adequately assess the impact of species recovery programmes on wild animal health and disease and to manage re-introduction programmes appropriately now and for any future re-introductions.

Tony Sainsbury said "The fundamental difficulties in analysing the risk of disease associated with translocation of wild animals are that knowledge of the number, identity and distribution of parasites and their ability to induce disease is limited and requires further research. In the meantime post-release health monitoring remains very important.

Their research is published online today (26.4.12) in the journal Conservation Biology.

Notes to editors:

Analyzing disease risks associated with translocations is published online today in Conservation Biology.

Translocations which cross ecological (e.g.habitat) and geographic (e.g. mountain ranges, seas) boundaries are most risky because the translocated wild animals are more likely to make contact with non-native parasites to which they are immunologically naive, and therefore the authors defined parasites as hazards where they were novel to the host.

Eurasian cranes - also known as common cranes - had all but died out in Britain due to hunting, egg collection and changes in land use, with only one small population in East Anglia remaining. Conservation organisations planned a reintroduction of birds from Germany to the Somerset Levels to establish a self-sustaining wild population as part of the Great Crane Project. In 2008 ZSL were asked to perform the disease risk analysis. The disease risk analysis was very important in ensuring the success of the project to date and ensuring disease risks were minimised.

'Parasite' is used as an all encompassing term to cover infectious agents such as viruses, bacteria, fungi, protozoa, helminths, and ectoparasites.

The study was funded by ZSL, Natural England and RSPB, with assistance from the WWT.

The Great Crane Project is a partnership between the Wildfowl & Wetlands Trust, RSPB and Pensthorpe Conservation Trust, with major funding from Viridor Credits Environmental Company. Our aim is to restore healthy populations of wild cranes throughout the UK, so that people can once again experience these beautiful birds.

Founded in 1826, the Zoological Society of London (ZSL) is an international scientific, conservation and educational charity: the key role is the conservation of animals and their habitats. The Society runs ZSL London Zoo and ZSL Whipsnade Zoo, carries out scientific research in the Institute of Zoology and is actively involved in field conservation in other countries worldwide. For further information please visit www.zsl.org

Since its founding in 1889, the RSPB has grown into a wildlife conservation charity with more than a million members. Its work is driven by a passionate belief that we all have a responsibility to protect birds and the environment. Bird populations reflect the health of the planet on which our future depends.

WWT is a leading UK conservation organisation saving wetlands for wildlife and people across the world. With over 60 years experience of wetland conservation, WWT is committed to the protection of wetlands and all that depend on them for survival.

WWT operates nine wetland visitor centres in the UK and manages over 2,000 hectares, including seven Sites of Special Scientific Interest (SSSI), one Area of Special Scientific Interest (ASSI), six Special Protection Areas (SPA), Part of one Marine Nature Reserve and six Ramsar sites, supporting over 200,000 waterbirds. WWT aviculturalists' extensive hand-rearing expertise is a vital part of the Great Crane Project.

Contact the WWT press office (01453 891144/ 07823 530 756) for a behind-the-scenes look at how the risk analysis is being implemented at 'crane school' in Slimbridge, where the 2012 chicks are currently hatching.

Emma Edwards/Smita Chandra | EurekAlert!
Further information:
http://www.zsl.org

More articles from Ecology, The Environment and Conservation:

nachricht Fungicides as an underestimated hazard for freshwater organisms
17.09.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Study: We need more realistic experiments on the impact of climate change on ecosystems
16.09.2019 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>