Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful calculation of human and natural influence on cloud formation

04.11.2016

Publication in Science: CLOUD data are fed into a global aerosol model to calculate climate effect.

When new particles develop in the atmosphere, this influences cloud formation and with that the climate too. Since a few years, these complex processes have been reproduced in a large air chamber within the CLOUD experiment at CERN.


CLOUD

GU

Researchers have now used the results for the first time to calculate the production of aerosol particles in all the Earth’s regions and at different heights. The study published in the journal “Science”, in which researchers from Goethe University Frankfurt were involved, deciphers the role of the various chemical systems which are responsible for particle formation. They also determined the influence of ions which develop through cosmic radiation.

Soot particles, dust lifted up by the wind or sea spray account for only some of the particles in the atmosphere. Others develop from certain trace vapours, for example when individual sulphuric acid and water molecules cluster as tiny droplets. This formation of new particles is known as nucleation.

Clouds are formed by water condensing on the larger aerosol particles or what are known as cloud condensation nuclei. The more cloud droplets develop, the more sunlight is reflected back into space. Climate models show that the additional particles caused by human activity produce a cooling effect which partially offsets the greenhouse effect. It is, however, less than previously assumed.

Aerosol particles from sulphuric acid and ammonia emissions

The model calculations presented in “Science” prove that about half the cloud condensation nuclei in the atmosphere originate from nucleation. In the atmosphere today, particle formation is dominated almost everywhere by mechanisms where at least three chemical components must come together: apart from the two basic substances, i.e. sulphuric acid and water, these are either ammonia or specific organic compounds such as oxidation products from terpenes. Close to ground level, organic substances from natural sources are important, whilst ammonia plays a key role higher up in the troposphere. Ammonia and sulphur emissions have increased considerably over the past decades as a result of human activities.

11-year solar cycle has scarcely any influence

CLOUD has also investigated how the 11-year solar cycle influences the formation of aerosol particles in our present-day atmosphere. The model calculations show that the effects as a result of changes in ionisation through the sun are too small to make a significant contribution to cloud formation. Although the ions are originally involved in the development of almost one third of all newly formed particles, the concentration of the large cloud condensation nuclei in the course of the 11-year cycle changes by only 0.1 percent – not enough to have any sizeable influence on the climate.

Cooling effects 27 percent less than expected

The CLOUD team has also presented first global model calculations for aerosol formation caused without the involvement of sulphuric acid and solely through extremely low volatile substances of biological origin (Gordon et al., PNAS). According to the findings, this process contributed significantly to particle formation above all in the pre-industrial atmosphere, since at that time far less sulphur components were released into the atmosphere. The number of particles in the pre-industrial atmosphere is now estimated to be far greater through the additional process than was shown in earlier calculations.

The model calculations, which are based on data from the CLOUD experiment, reveal that the cooling effects of clouds are 27 percent less than in climate simulations without this effect as a result of additional particles caused by human activity: Instead of a radiative effect of -0.82 W/m2 the outcome is only -0.60 W/m2.
E.M. Dunne, et al., 2016: Global particle formation from CERN CLOUD measurements, Science First Release, DOI: 10.1126/science.aaf2649

This article appeared online via First Release in Science on Thursday, 27th of October 2016. http://science.sciencemag.org/cgi/doi/10.1126/science.aaf2649
H. Gordon, et al., 2016: Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation, PNAS, 113 (43) 12053-12058; published ahead of print on the 10th of October 2016, DOI:10.1073/pnas.1602360113
http://www.pnas.org/content/113/43/12053.abstract

A photograph can be downloaded from: http://www.muk.uni-frankfurt.de/63775996
Further information: Prof. Dr. Joachim Curtius, Institute of Atmospheric and Environmental Sciences, Riedberg Campus, Tel.: ++49(0)798-40258, curtius@iau.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>