Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: We need more realistic experiments on the impact of climate change on ecosystems

16.09.2019

When it comes to the impact of climate change on ecosystems, we still have large knowledge gaps. Most experiments are unrealistic because they do not correspond to projected climate scenarios for a specific region. As a result, we lack reliable data on what ecosystems might look like in the future, as a team of biodiversity researchers from Central Germany show in the journal "Global Change Biology". The team reviewed all experimental studies on the topic. The researchers are now calling for the introduction of common protocols for future experiments.

The facts that climate change is man-made and that it will alter ecosystems are indisputable. However, there is debate about its extent and its consequences. "In order to predict how plant communities will react to climate change and what ecosystems of the future will look like, we need realistic field experiments worldwide," says Humboldt Professor Tiffany M. Knight from Martin Luther University Halle-Wittenberg (MLU) and the Helmholtz Centre for Environmental Research (UFZ). She heads the group "Spatial Interaction Ecology" at the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig.


In the Global Change Experimantal Facility (GCEF), run by UFZ, scientists are researching the consequences of the climate and land use changes to be expected in the future.

© André Künzelmann / UFZ

According to Knight, field experiments are a necessary tool for understanding the effects of climate on plant communities. "Nature is complex and plant communities are structured by many interacting environmental factors. Experiments can specifically isolate the role of climate factors, such as precipitation and temperature," says Knight.

The researchers conducted an extensive literature review on the subject, searching for field experiments on the relationship between climate factors and plant communities. "In these experiments, temperature and precipitation are altered to investigate their effects on the plant community," explains Dr Lotte Korell, a member of Knight's research group and lead author of the study. The team was able to identify a total of 76 studies that manipulated either precipitation, temperature or both.

"We were surprised to find that most of the studies were not based on the actual climate forecasts for the specific geographical regions. In many cases they were not even close," says Korell. According to her, this mismatch between the climate manipulations in field experiments and climate projections for the regions is due to many factors.

Many of the experiments were set up to address questions unrelated to climate change, or were set up before more precise climate projections were available for some regions. "There’s nothing wrong with the science in those experiments. They are just not suited to answer the questions we are now asking", says Tiffany Knight.

Depending on the region, current climate models project changes in precipitation of up to 25 per cent and higher temperatures of up to 5 degrees Celsius. However, almost all of the studies the team looked at manipulated much more extreme changes in precipitation, with values ranging from -100 and +300 percent.

The temperature experiments, on the other hand, underestimated the climate forecasts for the worst-case scenario. "This is why we don’t have the data we need to forecast and plan for our future," says Lotte Korell.

"There is too little known about how ecosystems will react to climate change and how we can best manage our natural ecosystems to maintain the functions that are critical to humanity", she continues.

For example, it is unclear whether ecosystems react consistently to a changing climate or whether there are thresholds at which ecosystems react in a dramatic or even unexpected way. The team is therefore suggesting the establishment of global protocols that can be used to conduct climate experiments based on realistic projections.

Originalpublikation:

About the study: Korell L., Auge H., Chase J., Harpole S., Knight T. We need more realistic climate change experiments for understanding ecosystems of the future. Global Change Biology (2019). doi: 10.1111/gcb.14797

https://doi.org/10.1111/gcb.14797

Tom Leonhardt | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-halle.de

More articles from Ecology, The Environment and Conservation:

nachricht Innovative grilling technique improves air quality
01.07.2020 | Fraunhofer Institute for Building Physics IBP

nachricht Traffic density, wind and air stratification influence the load of the air pollutant nitrogen dioxide
26.06.2020 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>