Study Suggests Low-Dose Arsenic Compromises Immune Response to Influenza A

First author Courtney D. Kozul and colleagues reported that mice exposed to 100 parts per billion (ppb) of arsenic in drinking water had altered immune responses, higher viral titers and more severe symptoms in response to influenza A infection compared with infected mice that were not exposed to arsenic.

“In this study, we show that chronic low-dose arsenic exposure can profoundly alter the response to influenza A (H1N1) infection [in mice],” wrote Kozul and colleagues. “Understanding the role of arsenic in response to such viral challenges [in humans] will be important in the overall assessment of the public health risk.”

Flu is a major cause of morbidity and mortality worldwide. An estimated 5-15% of the global population will contract influenza annually, resulting in over 3-5 million hospitalizations and 250,000-500,000 deaths.

Worldwide, millions of people drink water containing arsenic at levels above the U.S. EPA’s guideline of 10 ppb. In certain areas in the U.S. West, Midwest, Southwest and Northeast, people drinking contaminated well water may be exposed to arsenic levels ranging from 50 to 90 ppb or even higher. In some Asian countries, levels may exceed 3,000 ppb.

Alterations in response to repeated lung infection such as those observed by Kozul and colleagues may also contribute to other chronic illnesses, such as bronchiectasis, which is elevated by arsenic exposure in epidemiologic studies. Chronic exposure to arsenic has been associated with many diseases, including lung, liver, skin, kidney and bladder cancer; cardiovascular disease; diabetes; and reproductive and developmental defects.

“With the current concern about the H1N1/influenza A virus and the potential effect of H1N1 spreading in areas where arsenic exposure is common, this study is both extremely timely and highly relevant,” said EHP editor-in-chief Hugh A. Tilson, PhD. “It is expected that the effects of arsenic exposure on the immune response to viral infection are complex, and therefore it is likely that several mechanisms are contributing to the adverse outcomes observed in the arsenic-exposed mice.”

Other authors of this paper included Kenneth H. Ely, Richard I. Enelow and Joshua W. Hamilton. This work was funded by the Superfund Basic Research Program of the National Institute of Environmental Health Sciences (NIEHS)/National Institutes of Health.

The article is available free of charge at http://www.ehponline.org/docs/2009/0900911/abstract.html

EHP is published by the NIEHS, part of the U.S. Department of Health and Human Services. EHP is an Open Access journal. More information is available online at http://www.ehponline.org/. Brogan & Partners Convergence Marketing handles marketing and public relations for the publication and is responsible for creation and distribution of this press release.

Media Contact

Julie Hayworth-Perman Newswise Science News

More Information:

http://www.ehponline.org/

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors