Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals how gas, temperature controlled bacterial response to Deepwater Horizon spill

04.10.2011
In a new study, UC Santa Barbara scientists explain how they used DNA to identify microbes present in the Gulf of Mexico following the Deepwater Horizon oil spill, and how they identified the microbes responsible for consuming the large amount of natural gas present immediately after the spill. They also explain how water temperature played a key role in the way bacteria reacted to the spill.

The results of their research are published in the Proceedings of the National Academy of Sciences. The study was led by David Valentine, a geochemist and professor of earth science at UCSB, and Molly Redmond, a postdoctoral scholar in Valentine's laboratory. The research was supported by the National Science Foundation and the Department of Energy.

The Deepwater Horizon oil spill was unique, according to the scientists, because it happened at such great depth and contained so much natural gas –– predominantly methane, ethane, and propane. Those factors influenced the way bacteria responded to the spill. In earlier studies, Valentine, Redmond, and their colleagues showed that ethane and propane were the major hydrocarbon compounds being consumed in June 2010, two months after the start of the April spill. By September 2010, the scientists found that these gases and all of the methane had been consumed.

In May and June of 2010, the scientists found that bacterial communities in the Deepwater Horizon submerged plume were dominated by just a few types –– Oceanospirillales, Colwellia, and Cycloclasticus –– and were very different from control samples without large concentrations of oil or gas, and also from the communities in surface oil slicks collected at the same time.

"It's much warmer at the surface than in the deep water –– around 80 degrees (Fahrenheit) versus 40 degrees, which is pretty close to the temperature in your refrigerator," said Redmond, the study's lead author. "There was very little natural gas in the surface samples, suggesting that both temperature and natural gas could be important in determining which bacteria bloomed after the spill. The bacteria we saw in the deep-water samples in May and June were related to types of psychrophilic, or cold-loving bacteria. Most bacteria grow more slowly at cooler temperatures –– that's why we keep our food in the refrigerator. But psychrophilic bacteria actually grow faster at cold temperatures than they would at room temperature."

To provide additional evidence of the importance of temperature, the scientists added oil to water from the Gulf and incubated it at 40 degrees and at room temperature (about 70 degrees), and looked at which bacteria grew at the different temperatures. In the 40-degree samples, Colwellia were most abundant, but were only found in low numbers in the room temperature samples, suggesting that these particular bacteria have an advantage in cold water.

"To figure out which bacteria were consuming methane, ethane, and propane, we used a technique called stable isotope probing, where we incubated fresh seawater samples from the Gulf with isotopically labeled methane, ethane, or propane," Redmond said. "The bacteria that grew as they consumed the methane, ethane, or propane converted the isotopically labeled gases into biomass, including their DNA. By sequencing the labeled DNA, we were able to identify the bacteria that had consumed the methane, ethane, or propane. The bacteria that consumed the ethane and propane were the same Colwellia that we saw at high abundance in the environmental samples from May and June, when ethane and propane consumption rates were high, and that were abundant when we incubated oil at 40 degrees, but not at room temperature."

This suggests that the Colwellia were abundant because they grow well at low temperatures and because they could consume ethane and propane, which were very abundant during the spill, the researchers said. The bacteria that consumed methane were a group of bacteria called Methylococcaceae –– the same bacteria that were abundant in September after the methane had been consumed, suggesting that they were, in fact, important in consuming methane.

"The ability of oil-eating bacteria to also grow with natural gas as their foodstuff is important, because these bacteria may have grown to high numbers by eating the more-abundant gas, and then turned their attention to other components of the oil," said Valentine. "With this work, we have revealed some of the relationships between hydrocarbons released from Deepwater Horizon and the bacteria that responded. But numerous questions remain as to how the bacteria interacted with one another, and how this ecology impacted the fate of the released oil."

George Foulsham | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Loss of habitat causes double damage to species richness
02.04.2019 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Deep decarbonization of industry is possible with innovations
25.03.2019 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>