Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stop emitting CO2 or geoengineering could be our only hope

02.09.2009
The future of the Earth could rest on potentially dangerous and unproven geoengineering technologies unless emissions of carbon dioxide can be greatly reduced, the latest Royal Society report has found.

The report (published today,1st September, by the Royal Society(1), the UK’s national academy of science) found that unless future efforts to reduce greenhouse gas emissions are much more successful than they have been so far, additional action in the form of geoengineering will be necessary if we are to cool the planet.

Geoengineering technologies were found to be very likely to be technically possible and some were considered to be potentially useful to augment the continuing efforts to mitigate climate change by reducing emissions. However, the report identified major uncertainties regarding their effectiveness, costs and environmental impacts.

Professor John Shepherd, who chaired the Royal Society’s geoengineering study(2), said, “It is an unpalatable truth that unless we can succeed in greatly reducing CO2 emissions we are headed for a very uncomfortable and challenging climate future, and geoengineering will be the only option left to limit further temperature increases. Our research found that some geoengineering techniques could have serious unintended and detrimental effects on many people and ecosystems - yet we are still failing to take the only action that will prevent us from having to rely on them. Geoengineering and its consequences are the price we may have to pay for failure to act on climate change.”

The report assesses the two main kinds of geoengineering techniques – Carbon Dioxide Removal (CDR) and Solar Radiation Management (SRM). CDR techniques address the root of the problem – rising CO2 – and so have fewer uncertainties and risks, as they work to return the Earth to a more normal state. They are therefore considered preferable to SRM techniques, but none has yet been demonstrated to be effective at an affordable cost, with acceptable environmental impacts, and they only work to reduce temperatures over very long timescales.

SRM techniques act by reflecting the sun’s energy away from Earth, meaning they lower temperatures rapidly, but do not affect CO2 levels. They therefore fail to address the wider effects of rising CO2, such as ocean acidification, and would need to be deployed for a very long time. Although they are relatively cheap to deploy, there are considerable uncertainties about their regional consequences, and they only reduce some, but not all, of the effects of climate change, while possibly creating other problems. The report concludes that SRM techniques could be useful if a threshold is reached where action to reduce temperatures must be taken rapidly, but that they are not an alternative to emissions reductions or CDR techniques.

Professor Shepherd added, “None of the geoengineering technologies so far suggested is a magic bullet, and all have risks and uncertainties associated with them. It is essential that we strive to cut emissions now, but we must also face the very real possibility that we will fail. If “Plan B” is to be an option in the future, considerable research and development of the different methods, their environmental impacts and governance issues must be undertaken now. Used irresponsibly or without regard for possible side effects, geoengineering could have catastrophic consequences similar to those of climate change itself. We must ensure that a governance framework is in place to prevent this.”

Of the CDR techniques assessed, the following were considered to have most useful potential:

CO2 capture from ambient air – this would be the preferred method of geoengineering, as it effectively reverses the cause of climate change. At this stage no cost-effective methods have yet been demonstrated and much more research and development is needed.

Enhanced weathering – this technique, which utilises naturally occurring reactions of CO2 from the air with rocks and minerals, was identified as a prospective longer-term option. However more research is needed to find cost-effective methods and to understand the wider environmental implications.

Land use and afforestation – the report found that land use management could and should play a small but significant role in reducing the growth of atmospheric CO2 concentrations. However the scope for applying this technique would be limited by land use conflicts, and all the competing demands for land must be considered when assessing the potential for afforestation and reforestation. Should temperatures rise to such a level where more rapid action needs to be taken, the following SRM techniques were considered to have most potential:

Stratospheric aerosols – these were found to be feasible, and previous volcanic eruptions have effectively provided short-term preliminary case studies of the potential effectiveness of this method. The cost was assessed as likely to be relatively low and the timescale of action short. However, there are some serious questions over adverse effects, particularly depletion of stratospheric ozone.

Space-based methods – these were considered to be a potential SRM technique for long-term use, if the major problems of implementation and maintenance could be solved. At present the techniques remain prohibitively expensive, complex and would be slow to implement.

Cloud albedo approaches (eg. cloud ships) – the effects would be localised and the impacts on regional weather patterns and ocean currents are of considerable concern but are not well understood. The feasibility and effectiveness of the technique is uncertain. A great deal more research would be needed before this technique could be seriously considered.

The following techniques were considered to have lower potential:

Biochar (CDR technique) – the report identified significant doubts relating to the potential scope, effectiveness and safety of this technique and recommended that substantial research would be required before it could be considered for eligibility for UN carbon credits.

Ocean fertilisation (CDR technique) – the report found that this technique had not been proved to be effective and had high potential for unintended and undesirable ecological side effects.

Surface albedo approaches (SRM technique, including white roof methods, reflective crops and desert reflectors) – these were found to be ineffective, expensive and, in some cases, likely to have serious impacts on local and regional weather patterns.

Catherine de Lange | alfa
Further information:
http://www.royalsociety.org/geoengineeringclimate

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>