Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spring Cold Snap Helps with Stream Ecosystem Research

27.07.2009
A rare April freeze in 2007 provided researchers at the Department of Energy’s Oak Ridge National Laboratory with further evidence that climate change could have negative effects on stream and forest ecosystems.

As warm weather arrives sooner in many parts of the nation, forest plants and trees on the banks flourish, shading the stream from sunlight and causing an overall decrease in productivity in the late spring and summer.

A research paper published in this month’s issue of Global Change Biology titled “Unexpected effect of climate change: Stream ecosystem responses to the 2007 spring freeze” describes how a small change in canopy cover can dramatically impact a stream.

“The study implies that the algal productivity pulse in the stream that drives the ecosystem during the spring months could be shortened with climate change if leaf-out continues to occur earlier each year,” said ORNL researcher Patrick Mulholland, author of the paper. “The stream no longer gets that period of peak productivity in spring because the leaves are shading the stream when the sun angle is relatively high.”

For this particular study, an Arctic air mass sent temperatures to below 28 degrees Fahrenheit for several nights in succession, freezing many of the newly emerged leaves and leaving the stream exposed to higher than normal levels of sunlight over the next several months.

This early April freeze resulted in positive effects for a well-studied East Tennessee stream and reiterated the importance of sunlight on the growth of algae, bacteria, snails and other organisms in forest streams.

Compared to typical conditions, the post-freeze conditions set in motion a chain reaction.

“Increased light levels caused a cascade of ecological effects in the stream, beginning with considerably higher growth rates during the late spring and summer months when normally low light levels severely limit stream production,” said Mulholland, a member of the Environmental Sciences Division.

In this case, a freeze caused the Walker Branch stream to prosper, but an ecosystem cannot count on unexpected weather events to maintain productivity.

“The stream ecosystem cannot depend on an Arctic air mass moving in every year, killing the leaves and exposing the stream to sunlight, resulting in increased growth,” Mulholland said. “It’s an unpredictable weather occurrence. On the other hand, we see that early leaf emergence has become predictable and has negative effects on the stream ecosystem during the critical spring period when many stream organisms are dependent on algae for food.”

Although canopy cover in the spring leads to decreased organism growth, in the autumn, bacteria and fungi decompose the leaves and grow from the nutrients, thus stimulating productivity.

This research was funded by the Office of Biological and Environmental Research within the DOE Office of Science. Co-authors of the research paper are John Smith of ORNL, Brian Roberts of Louisiana Universities Marine Consortium and Walter Hill of the University of Illinois.

ORNL is managed by UT-Battelle for the Department of Energy.

Emma Macmillan | Newswise Science News
Further information:
http://www.ornl.gov

Further reports about: Arctic ORNL STREAM Science TV Snap cold fusion ecosystem environmental risk

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>