Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solved! Mystery that stumped ecosystem modelers

23.02.2012
Scientists show that predator/prey relationships make possible the rich biodiversity of complex ecosystems

As scientists warn that the Earth is on the brink of a period of mass extinctions, they are struggling to identify ecosystem responses to environmental change. But to truly understand these responses, more information is needed about how the Earth's staggering diversity of species originated.

Curiously, a vexing modeling mystery has stymied research on this topic: mathematical models have told us that complex ecosystems, such as jungles, deserts and coral reefs, in which species coexist and interact with another, cannot persist--even though they obviously do.

But now, Stefano Allesina and Si Tang, both of the University of Chicago, have solved that vexing modeling mystery, and have thereby laid the groundwork for improvements in the modeling of complex ecosystems to environmental change.

The researchers' work, which was funded by the National Science Foundation (NSF), is published in this week's issue of Nature.

The tension between mathematical models of ecosystems and the existence of the Earth's rich biodiversity was first exposed about 40 years ago by the development of a ground-breaking mathematical model that represented the relationship between ecosystem stability and diversity; the model was developed by Robert M. May of Oxford University.

According to May's model, ecosystems that harbor large numbers of interacting species would necessarily be extremely unstable--so unstable that even slight perturbations, such as variable weather and environmental conditions, would be enough to trigger massive extinctions within them. Therein lies a paradox: According to May's modeling, the persistence in nature of the complex ecosystems we observe should be exceedingly improbable.

Ever since May released his modeling results, scientists have been attempting to identify factors that enable species to persist despite the general tendency towards instability and extinctions highlighted by May's results. Now, in their Nature paper, Allesina and Tang explain why May's results do not accurately describe ecosystems in which "Eat or be eaten", relationships (predator/prey relationships) are prevalent. Allesina explains: "May's model assumes that any two species in a large ecological network interact with one another at random, and without any consideration of the specific type of interaction between them, whether it is a predator-prey relationship, a mutualistic relationship or a competitive relationship."

But in their recent research, Allesina and Tang modeled ecosystems in which species consume each other in addition to interacting with one another as competitors or mutualists. Their results explain why large numbers of species do, in fact, thrive instead of necessarily going extinct as predicted by May's model. This advance provides the foundation for the development of increasingly sophisticated analyses of ecosystem responses to environmental change.

Allesina believes that it is predator/prey relationships (not competitor or mutualistic relationships) that provide the necessary stability for almost infinite numbers of species to exist in ecosystems. They do so by keeping the size of species populations in check at supportable levels. Allesina explains, "When prey are high, predators increase and reduce the number of prey by predation. When predators are low, prey decrease and thus reduce the number of predators by starvation. These predator/prey relationships thereby promote stability in ecosystems and enable them to maintain large numbers of species."

By contrast, mutualistic relationships may reinforce the growth of large populations and competitive relationships may depress population numbers to the point of ecological instability. Allesina says that May's model mixed various types of species interactions but could not represent these relationships accurately because of technical modeling constraints that he and Tang overcame.

"The results of Allesina and Tang's network analyses are important," says David Spiller, an NSF program director, "because they show that the stability properties of complex ecological systems are determined by the type of interaction among species (predation, competition, mutualism) and the strength of those interactions."

Allesina says that he and Tang intend to further improve their ecosystem model by embedding into it well-known interactions that exist between particular species. He also says that the insights gleaned through this study may be used to improve models of other types of networks that are unrelated to ecology, such as various types of gene regulatory networks and chemical reactions.

Remarkably, Allesina says that he and Tang cracked the biodiversity mystery without supercomputers or other high-tech instruments that are so frequently at the core of current biological discoveries: "We did the necessary calculations with just a pen and paper after finding a 1988 article on quantum physics that gave us the key to crack the problem."

Lily Whiteman | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Deep decarbonization of industry is possible with innovations
25.03.2019 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>