Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skip This Cocktail Party: Contaminants in Marine Mammals' Brains

22.05.2009
The most extensive study of pollutants in marine mammals’ brains reveals that these animals are exposed to a hazardous cocktail of pesticides such as DDTs and PCBs, as well as emerging contaminants such as brominated flame retardants.

Eric Montie, the lead author on the study currently in press and published online April 17 in Environmental Pollution, performed the research as a student in the Woods Hole Oceanographic Institution-MIT Joint Graduate Program in Oceanography and Ocean Engineering and as a postdoctoral fellow at the Woods Hole Oceanographic Institution (WHOI).

The final data analysis and writing were conducted at College of Marine Science, University of South Florida, where Montie now works in David Mann’s marine sensory biology lab.

Co-author Chris Reddy, a senior scientist in the WHOI Marine Chemistry and Geochemistry Department, describes the work as “groundbreaking because Eric measures a variety of different chemicals in animal tissues that had not been previously explored. It gives us greater insight into how these chemicals may behave in marine mammals.”

The work represents a major collaborative effort between the laboratories of Reddy and Mark Hahn in the WHOI Biology Department, where Montie was a graduate student and post doc, as well as Robert Letcher at Environment Canada. Montie traveled to Environment Canada in Ottawa to learn the painstaking techniques required to extract and to quantify more than 170 different pollutants and their metabolites. He then brought the methods back to WHOI and performed the analyses in Reddy’s laboratory. Reddy describes the methods as extremely unforgiving and explains, “This is not making Toll House cookies. The fact that Eric pulled it off so seamlessly is amazing considering that he did this by himself far away from Ottawa.”

Montie analyzed both the cerebrospinal fluid and the gray matter of the cerebellum in eleven cetaceans and one gray seal stranded near Cape Cod, Mass. His analyses include many of the chemicals that environmental watchdog groups call the dirty dozen, a collection of particularly ubiquitous pesticides that were banned in the 1970s because of their hazards to human health. But the Montie study goes much further in the scope of contaminants analyzed. And many of the contaminants are anything but benign.

The chemicals studied include pesticides like DDT, which has been shown to cause cancer and reproductive toxicity, and PCBs, which are neurotoxicants known to disrupt the thyroid hormone system. The study also quantifies concentrations of polybrominated diphenyl ethers or PBDEs (a particular class of flame retardants), which are neurotoxicants that impair the development of motor activity and cognition. This work is the first to quantify concentrations of PBDEs in the brains of marine mammals.

The results revealed that concentration of one contaminant was surprisingly high. According to Montie, “The biggest wakeup was that we found parts per million concentrations of hydroxylated PCBs in the cerebrospinal fluid of a gray seal. That is so worrisome for me. You rarely find parts per million levels of anything in the brain.”

The particular hydroxylated PCB found at these soaring concentrations, called 4-OH-CB107, has some serious side effects. In rats, it selectively binds to a carrier protein called transthyretin, which has been found to be abundant in cerebrospinal fluid in mammals. This protein plays a role in thyroid hormone transport throughout the brain, though its exact role is not known. Thyroid hormone plays a key role in the development of the brain, as well as sensory functions, in particular hearing in mammals. Compromised hearing would have significant impact for dolphins, because as Montie points out, “these animals rely on hearing as their primary sensory modality to communicate and to find and catch food.”

Just how these chemicals might impact marine mammal health is something Montie plans to pursue. This summer, Montie, Mann, and Dr. Mandy Cook (from Portland University) will partner with scientists from NOAA to test the hearing in dolphins living near a Superfund site in Georgia and compare it to dolphins from locations where ambient concentrations of pollutants are significantly lower. Montie is also working with Frances Gulland, director of the Marine Mammal Center in Sausalito, CA, to examine how California sea lions’s exposure to PCBs may increase their sensitivity to domoic acid, a naturally produced marine neurotoxin associated with “red tides.”

The work of Montie and his colleagues lays the groundwork for understanding how environmental contaminants influence the central nervous system of marine mammals. Montie sees this work as the forefront of a new field of research, something that might be called neuro-ecotoxicology. For years, most of the work in this area focused on how concentrations of marine pollutants affected the animal’s immune system or its hormone systems. The research by Montie, Reddy, Hahn, and their coauthors provides tools to ask deeper questions about how the ever-growing list of contaminants in the ocean affect the neurological development of marine mammals.

And what sort of results does Montie expect this new field of neuro-ecotoxicology to produce? “I think we don’t really know the brunt of what we are going to see in wildlife.”

This study was performed with funding form the WHOI Ocean Life Institute, WHOI Marine Policy Center, Walter A. and Hope Noyes Smith, and an EPA STAR fellowship. Supplemental funding was provided from the Natural Science and Engineering Research Council (NSERC) of Canada (to Robert Letcher), David Mann at the College of Marine Science, University of South Florida, and a NOAA Oceans and Human Health postdoctoral traineeship provided by Jonna Mazet (UC Davis Wildlife Health Center), Kathi Lefebvre (Northwest Fisheries Science Center), and Frances Gulland (The Marine Mammal Center).

Related Links:

WHOI Ocean Life Institute
http://www.whoi.edu/page.do?pid=7398
Christopher Reddy, Marine Chemist
http://www.whoi.edu/page.do?pid=7500&tid=282&cid=29167
The Hahn Lab
http://www.whoi.edu/science/B/people/mhahn/hahnm.html
Supreme Court Weighs in on Whales and Sonar
http://www.whoi.edu/oceanus/viewArticle.do?id=56252&archives=true
Are Pollutants Disrupting Marine Ecosystems?
http://www.whoi.edu/oceanus/viewArticle.do?id=32686
Mann Laboratory - Marine Sensory Biology
http://www.marine.usf.edu/bio/fishlab/

Media Relations Office | Newswise Science News
Further information:
http://www.whoi.edu
http://www.whoi.edu/page.do?pid=7545&tid=282&cid=57347&ct=162

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>