Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skip This Cocktail Party: Contaminants in Marine Mammals' Brains

22.05.2009
The most extensive study of pollutants in marine mammals’ brains reveals that these animals are exposed to a hazardous cocktail of pesticides such as DDTs and PCBs, as well as emerging contaminants such as brominated flame retardants.

Eric Montie, the lead author on the study currently in press and published online April 17 in Environmental Pollution, performed the research as a student in the Woods Hole Oceanographic Institution-MIT Joint Graduate Program in Oceanography and Ocean Engineering and as a postdoctoral fellow at the Woods Hole Oceanographic Institution (WHOI).

The final data analysis and writing were conducted at College of Marine Science, University of South Florida, where Montie now works in David Mann’s marine sensory biology lab.

Co-author Chris Reddy, a senior scientist in the WHOI Marine Chemistry and Geochemistry Department, describes the work as “groundbreaking because Eric measures a variety of different chemicals in animal tissues that had not been previously explored. It gives us greater insight into how these chemicals may behave in marine mammals.”

The work represents a major collaborative effort between the laboratories of Reddy and Mark Hahn in the WHOI Biology Department, where Montie was a graduate student and post doc, as well as Robert Letcher at Environment Canada. Montie traveled to Environment Canada in Ottawa to learn the painstaking techniques required to extract and to quantify more than 170 different pollutants and their metabolites. He then brought the methods back to WHOI and performed the analyses in Reddy’s laboratory. Reddy describes the methods as extremely unforgiving and explains, “This is not making Toll House cookies. The fact that Eric pulled it off so seamlessly is amazing considering that he did this by himself far away from Ottawa.”

Montie analyzed both the cerebrospinal fluid and the gray matter of the cerebellum in eleven cetaceans and one gray seal stranded near Cape Cod, Mass. His analyses include many of the chemicals that environmental watchdog groups call the dirty dozen, a collection of particularly ubiquitous pesticides that were banned in the 1970s because of their hazards to human health. But the Montie study goes much further in the scope of contaminants analyzed. And many of the contaminants are anything but benign.

The chemicals studied include pesticides like DDT, which has been shown to cause cancer and reproductive toxicity, and PCBs, which are neurotoxicants known to disrupt the thyroid hormone system. The study also quantifies concentrations of polybrominated diphenyl ethers or PBDEs (a particular class of flame retardants), which are neurotoxicants that impair the development of motor activity and cognition. This work is the first to quantify concentrations of PBDEs in the brains of marine mammals.

The results revealed that concentration of one contaminant was surprisingly high. According to Montie, “The biggest wakeup was that we found parts per million concentrations of hydroxylated PCBs in the cerebrospinal fluid of a gray seal. That is so worrisome for me. You rarely find parts per million levels of anything in the brain.”

The particular hydroxylated PCB found at these soaring concentrations, called 4-OH-CB107, has some serious side effects. In rats, it selectively binds to a carrier protein called transthyretin, which has been found to be abundant in cerebrospinal fluid in mammals. This protein plays a role in thyroid hormone transport throughout the brain, though its exact role is not known. Thyroid hormone plays a key role in the development of the brain, as well as sensory functions, in particular hearing in mammals. Compromised hearing would have significant impact for dolphins, because as Montie points out, “these animals rely on hearing as their primary sensory modality to communicate and to find and catch food.”

Just how these chemicals might impact marine mammal health is something Montie plans to pursue. This summer, Montie, Mann, and Dr. Mandy Cook (from Portland University) will partner with scientists from NOAA to test the hearing in dolphins living near a Superfund site in Georgia and compare it to dolphins from locations where ambient concentrations of pollutants are significantly lower. Montie is also working with Frances Gulland, director of the Marine Mammal Center in Sausalito, CA, to examine how California sea lions’s exposure to PCBs may increase their sensitivity to domoic acid, a naturally produced marine neurotoxin associated with “red tides.”

The work of Montie and his colleagues lays the groundwork for understanding how environmental contaminants influence the central nervous system of marine mammals. Montie sees this work as the forefront of a new field of research, something that might be called neuro-ecotoxicology. For years, most of the work in this area focused on how concentrations of marine pollutants affected the animal’s immune system or its hormone systems. The research by Montie, Reddy, Hahn, and their coauthors provides tools to ask deeper questions about how the ever-growing list of contaminants in the ocean affect the neurological development of marine mammals.

And what sort of results does Montie expect this new field of neuro-ecotoxicology to produce? “I think we don’t really know the brunt of what we are going to see in wildlife.”

This study was performed with funding form the WHOI Ocean Life Institute, WHOI Marine Policy Center, Walter A. and Hope Noyes Smith, and an EPA STAR fellowship. Supplemental funding was provided from the Natural Science and Engineering Research Council (NSERC) of Canada (to Robert Letcher), David Mann at the College of Marine Science, University of South Florida, and a NOAA Oceans and Human Health postdoctoral traineeship provided by Jonna Mazet (UC Davis Wildlife Health Center), Kathi Lefebvre (Northwest Fisheries Science Center), and Frances Gulland (The Marine Mammal Center).

Related Links:

WHOI Ocean Life Institute
http://www.whoi.edu/page.do?pid=7398
Christopher Reddy, Marine Chemist
http://www.whoi.edu/page.do?pid=7500&tid=282&cid=29167
The Hahn Lab
http://www.whoi.edu/science/B/people/mhahn/hahnm.html
Supreme Court Weighs in on Whales and Sonar
http://www.whoi.edu/oceanus/viewArticle.do?id=56252&archives=true
Are Pollutants Disrupting Marine Ecosystems?
http://www.whoi.edu/oceanus/viewArticle.do?id=32686
Mann Laboratory - Marine Sensory Biology
http://www.marine.usf.edu/bio/fishlab/

Media Relations Office | Newswise Science News
Further information:
http://www.whoi.edu
http://www.whoi.edu/page.do?pid=7545&tid=282&cid=57347&ct=162

More articles from Ecology, The Environment and Conservation:

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>