Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Severe drought, other changes can cause permanent ecosystem disruption

14.10.2011
An eight-year study has concluded that increasingly frequent and severe drought, dropping water tables and dried-up springs have pushed some aquatic desert ecosystems into “catastrophic regime change,” from which many species will not recover.

The findings, just published in the journal Freshwater Biology, raise concerns that climate change, over-pumping of aquifers for urban water use, and land management may permanently affect which species can survive. The research was supported by the National Science Foundation.

“Populations that have persisted for hundreds or thousands of years are now dying out,” said David Lytle, an associate professor of zoology at Oregon State University. “Springs that used to be permanent are drying up. Streams that used to be perennial are now intermittent. And species that used to rise and fall in their populations are now disappearing.”

The research, done by Lytle and doctoral candidate Michael Bogan, examined the effect of complete water loss and its subsequent impact on aquatic insect communities in a formerly perennial desert stream in Arizona’s French Joe Canyon, before and after severe droughts in the early 2000s.

The stream completely dried up for a period in 2005, and again in 2008 and 2009, leading to what researchers called a rapid “regime shift” in which some species went locally extinct and others took their place. The ecosystem dynamics are now different and show no sign of returning to their former state. Six species were eliminated when the stream dried up, and 40 others became more abundant. Large-bodied “top predators” like the giant waterbug disappeared and were replaced by smaller “mesopredators” such as aquatic beetles.

“Before 2004, this area was like a beautiful oasis, with lots of vegetation, birds and rare species,” Lytle said. “The spring has lost a number of key insect species, has a lot less water, and now has very different characteristics.”

The phenomena, the researchers say, does not so much indicate the disappearance of life – there is about as much abundance as before. It’s just not the same.

“Our study focused on a single stream in isolation, but this process of drying and local extinction is happening across the desert Southwest,” Bogan said. “Eventually this could lead to the loss of species from the entire region, or the complete extinction of species that rely on these desert oases.”

Small streams such as this are of particular interest because they can be more easily observed and studied than larger rivers and streams, and may represent a microcosm of similar effects that are taking place across much of the American West, the researchers said. The speed and suddenness of some changes give species inadequate time to adapt.

“It’s like comparing old-growth forests to second-growth forests,” Lytle said. “There are still trees, but it’s not the same ecosystem it used to be. These desert streams can be a window to help us see forces that are at work all around us, whether it’s due to climate change, land management or other factors.”

The researchers noted in their report that the last 30 years have been marked by a significant increase in drought severity in the Southwest. The drought that helped dry up French Joe Canyon in 2005 resulted in the lowest flow in Arizona streams in 60 years, and in many cases the lowest on record. At French Joe Canyon, the stream channel was completely dry to bedrock, leaving many aquatic invertebrates dead in the sediments.

That was probably “an unprecedent disturbance,” the researchers said in their report. Community composition shifted dramatically, with longer-lived insects dying out and smaller, shorter-lived ones taking their places.

Conceptually similar events have taken place in the past in plant communities in the Florida Everglades, floodplains in Australia, and boreal forests following fire disturbance, other researchers have found. In the Southwest, climate change models predict longer, more frequent and more intense droughts in the coming century, the scientists noted in their study.

About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

The study this story is based on is available in ScholarsArchive@OSU: http://bit.ly/oA4LLz

David Lytle | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Road access for all would be costly, but not so much for the climate
10.07.2020 | Potsdam-Institut für Klimafolgenforschung

nachricht Innovative grilling technique improves air quality
01.07.2020 | Fraunhofer Institute for Building Physics IBP

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>