Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scrubbing CO2 from atmosphere could be a long-term commitment

02.07.2010
With carbon dioxide in the atmosphere approaching alarming levels, even halting emissions altogether may not be enough to avert catastrophic climate change. Could scrubbing carbon dioxide from the air be a viable solution?

A new study by scientists at the Carnegie Institution suggests that while removing excess carbon dioxide would cool the planet, complexities of the carbon cycle would limit the effectiveness of a one-time effort. To keep carbon dioxide at low levels would require a long-term commitment spanning decades or even centuries.

Previous studies have shown that reducing carbon dioxide emissions to zero would not lead to appreciable cooling, because carbon dioxide already within the atmosphere would continue to trap heat. For cooling to occur, greenhouse gas concentrations would need to be reduced. "We wanted to see what the response would be if carbon dioxide were actively removed from the atmosphere," says study coauthor Ken Caldeira of Carnegie's Department of Global Ecology. "Our study is the first to look at how much carbon dioxide you would need to remove and for how long to keep atmospheric carbon dioxide concentrations low. This has obvious implications for the public and for policy makers as we weigh the costs and benefits of different ways of mitigating climate change."

For the study, Caldeira and lead author Long Cao, also at Carnegie, did not focus on any specific method of capturing and storing carbon dioxide from the ambient air. The possibilities include approaches as diverse as industrial-scale chemical technologies and changing land use so more carbon dioxide is naturally absorbed by vegetation. For the study, the researchers used an Earth system model under projected conditions at the middle of this century when global surface temperatures have been raised 2° C (3.6° F). They then simulated the effects of an idealized case in which carbon emissions were reduced to zero and carbon dioxide in the atmosphere was instantaneously restored to pre-industrial levels.

The researchers found that removing all human-emitted carbon dioxide from the atmosphere caused temperatures to drop, but it offset less than half of CO2-induced warming. Why would removing all the extra carbon dioxide have such a small effect? The researchers point to two primary reasons. First, slightly more than half of the carbon dioxide emitted by fossil-fuels over the past two centuries has been absorbed in the oceans, rather than staying in the atmosphere. When carbon dioxide is removed from the atmosphere, it is partially replaced by gas coming out of ocean water. Second, the rapid drop in atmospheric carbon dioxide and the change in surface temperature alters the balance of the land carbon cycle, causing the emission of carbon dioxide from the soil to exceed its uptake by plants. As a result, carbon dioxide is released back into the atmosphere.

According to the simulations, for every 100 billion tons of carbon removed from the atmosphere, average global temperatures would drop 0.16° C (0.28° F).

Further simulations showed that in order to keep carbon dioxide at low levels, the process of extracting carbon dioxide from the air would have to continue for many decades, and perhaps centuries, after emissions were halted.

"If we do someday decide that we need to remove carbon dioxide from the atmosphere to avoid a climate crisis, we might find ourselves committed to carbon dioxide removal for a long, long time. A more prudent plan might involve preventing carbon dioxide emissions now rather than trying to clean up the atmosphere later."

The Carnegie Institution (carnegiescience.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science. The Department of Global Ecology, located in Stanford, California, was established in 2002 to help build the scientific foundations for a sustainable future. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

Ken Caldeira | EurekAlert!
Further information:
http://carnegiescience.edu
http://www.ciw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>