Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Graduate Students Discover Methane Seep Ecosystem

30.07.2012
During a recent oceanographic expedition off San Diego, graduate student researchers from Scripps Institution of Oceanography at UC San Diego discovered convincing evidence of a deep-sea site where methane is likely seeping out of the seafloor, the first such finding off San Diego County.

Such "methane seeps" are fascinating environments because of their extraordinary chemical features and often bizarre marine life. The area of interest, roughly 20 miles west of Del Mar, is centered on a fault zone known as the San Diego Trough Fault zone. Methane, a clear, highly combustible gas, exists in the earth's crust under the seafloor along many of the world's continental margins. Faults can provide a pathway for methane to "seep" upward toward the seafloor.

The Scripps graduate students made the discovery during the recent San Diego Coastal Expedition (bit.ly/sdcoastex), a multidisciplinary voyage conceived and executed by Scripps graduate students. The cruise was funded by the University of California Ship Funds Program, which supports student research at sea and provides seagoing leadership opportunities.

While conducting surveys in search of methane seeps aboard Scripps' research vessel Melville, the graduate students mapped a distinct mound on the seafloor at 1,036 meters depth (3,400 feet), spanning the size of a city block and rising to the height of a two-story building. The area had been recommended by Jamie Conrad, Holly Ryan (U.S. Geological Survey) and Charles Paull (Monterey Bay Aquarium Research Institute), who surveyed the faults in 2010.

"Below the mound," described Scripps geosciences graduate student Jillian Maloney, "we observed a disruption in subsurface sediment layers indicative of fluid seepage."

The Scripps researchers then deployed instruments to collect sediment cores, gathering further evidence such as seep-dwelling animals, sulfidic-smelling black mud and carbonate nodules. These samples are currently being analyzed in Scripps laboratories for chemical clues and other telling elements of the environment.

Organisms collected from the site include thread-like tubeworms called siboglinids and several clams. Siboglinids lack a mouth and digestive system and gain nutrition via a symbiotic relationship with bacteria living inside them, while many clams at seeps get some of their food from sulfide-loving bacteria living on their gills.

While food is scarce in much of the cold, dark ocean depths, it is abundant at seeps due to the bacteria that proliferate around the methane source. Microbes there are eaten by worms, snails, crabs and clams, leading to a rich and productive community that helps sustain the surrounding deep-sea ecosystem.

"These chemosynthetic ecosystems are considered 'hot spots' of life on the seafloor in an otherwise desert-like landscape," said San Diego Coastal Expedition team member Alexis Pasulka, a Scripps biological oceanography graduate student. "New forms of life are continuously being discovered in these environments. Therefore, it is important to study these ecosystems not only to further appreciate the diversity of life in our oceans, but also so that we can better understand how these ecosystems contribute to overall ocean productivity and the carbon cycle."

Methane is a potent greenhouse gas, and researchers don't yet fully understand the magnitude to which seeping methane in the ocean contributes additional carbon to the atmosphere. Moreover, on many continental margins, frozen methane hydrates could represent a future energy source. Along the West Coast, methane seeps are known to exist off Oregon, California (near Eureka, Monterey Bay, Point Conception and Santa Monica), in the Gulf of California and off Costa Rica.

"This is a significant and exciting discovery in part because of the possibilities for future research at Scripps," said biological oceanography graduate student Benjamin Grupe, a member of the seep contingent on the San Diego Coastal Expedition. "The existence of a methane seep just a few hours from San Diego should allow Scripps scientists to visit frequently, studying how this dynamic ecosystem changes over days, months and years. Such regular data collection is difficult at most cold seeps, which rarely occur so close to ports or research institutions."

Grupe will lead a follow-up cruise in December that will revisit the newly discovered seep to collect additional samples and learn more about this ecosystem. The team of graduate students hopes to raise funds to employ technologies such as video-driven coring instruments and towed video cameras that will give them an up-close look at the methane seep.

The search for local seeps was one focus area of the multidisciplinary San Diego Coastal Expedition, which included teams of students investigating the oceanography and marine ecosystems off San Diego and led by chief scientist Christina Frieder. In addition to Grupe, Pasulka and Maloney, other members of the seep team included geophysics graduate students Valerie Sahakian and Rachel Marcuson.

R/V Melville, the oldest ship in the U.S. academic fleet, is owned by the U.S. Navy and has been operated by Scripps Oceanography for all of its 41 years.

"The students should be congratulated on their hard work and perseverance leading to this exciting find," said Lisa Levin, a Scripps professor who has studied methane seep ecosystems in most of the world's oceans. "Other scientists have suspected that methane seeps were present in the San Diego region, but these new data and samples provide the first convincing evidence. We know very little about what lives in deep waters-the planet's largest ecosystem-so it is not unexpected to find surprises on the deep-sea floor right in our own backyard. Having a 'local' seep should be a great boon to deep-sea research, education and public outreach at Scripps."

UC San Diego News on the web at: http://ucsdnews.ucsd.edu

Mario Aguilera | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>