Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Reveal Soot’s Role in Climate Change

18.08.2008
Soot, or aerosols, can have both heating and cooling effects on clouds. Weizmann Institute scientists and colleagues have now developed a model of this complex relationship, showing when aerosols rising into the clouds will result in heating or cooling. Their findings may help convey the true climatic consequences of fires and industrial fuels.

Tons of soot are released into the air annually as forest fires rage from California to the Amazon to Siberia and Indonesia.

Climate scientists have generally assumed that the main effect of smoke on climate is cooling, as the floating particles can reflect some solar energy back to space as well as increasing cloud size and lifespan. But new research by scientists at the Weizmann Institute of Science; the University of Maryland, Baltimore County (UMBC); and NASA may cause them to rethink soot’s role in shaping the Earth’s climate.

Airborne particles such as soot – known collectively as aerosols – rise into the atmosphere where they interact with clouds. Understanding what happens when the two meet is extremely complicated, in part because clouds are highly dynamic systems that both reflect the sun’s energy back into space, cooling the upper atmosphere, and trap heat underneath, warming the lower atmosphere and the Earth’s surface. Aerosols, in turn, can have both heating and cooling effects on clouds. On the one hand, water droplets form around the aerosol particles, which may extend the cloud cover. On the other hand, particles, especially soot, absorb the sun’s radiation, stabilizing the atmosphere and thus reducing cloud formation.

Dr. Ilan Koren and Hila Afargan of the Weizmann Institute’s Environmental Sciences and Energy Research Department, together with colleagues from UMBC and NASA’s Goddard Space Flight Center in Maryland, have, for the first time, developed an analytical model that puts all of these factors together to show when aerosols rising into the clouds will heat things up and when they will cool them off. The scientists tested their model on data from the Amazon, finding it reflected the true situation on the ground so accurately they could rule out the possibility that random changes in cloud cover – rather than aerosols from burning forests – were at work.

Their findings, which appear in the August 15, 2008 issue of Science, reveal that adding small quantities of aerosols into a clean environment can indeed produce a net cooling effect. As more and more particles enter the cloud layer, however, the effect progressively switches from cooling to heating mode. The researchers also found that the extent of the original cloud cover is important. A completely overcast sky prevents the sun’s rays from reaching the aerosols, so the result may be additional cooling of the atmosphere and the Earth’s surface. But the larger the ratio of open sky to clouds, the more aerosol particles absorb radiation, thus hastening the heating of the remaining cloud cover, reducing cloud cover, and heating the system.

An accurate model of the intricate relationship between clouds and aerosols has been a key missing piece in the picture of human-induced climate change. The scientists believe their findings may help both climate modelers and policy makers to understand the true climatic consequences of burning trees or sooty industrial fuels.

Dr. Ilan Koren’s research is supported by the Sussman Family Center for the Study of Environmental Sciences; the Fusfeld Research Fund; and the Samuel M. Soref and Helene K. Soref Foundation.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>