Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists outline planetary boundaries: A safe operating space for humanity

28.09.2009
New approaches are needed to help humanity deal with climate change and other global environmental threats that lie ahead in the 21st century, according to a group of 28 internationally renowned scientists.

The scientists propose that global biophysical boundaries, identified on the basis of the scientific understanding of the earth system, can define a "safe planetary operating space" that will allow humanity to continue to develop and thrive for generations to come.

This new approach to sustainable development is conveyed in the current issue of the scientific journal Nature. The authors have made a first attempt to identify and quantify a set of nine planetary boundaries, including climate change, freshwater use, biological diversity, and aerosol loading.

The research was performed by a working group at UC Santa Barbara's National Center for Ecological Analysis and Synthesis (NCEAS), in cooperation with the Stockholm Resilience Centre at Stockholm University.

One important strand of the research behind this article is based in the global project known as IHOPE. The goal of the Integrated History and future Of People on Earth (IHOPE) project is to understand the interactions of the environmental and human process over the ten to hundred millennia to determine how human and biophysical changes have contributed to Earth system dynamics. The IHOPE working group is assembled at NCEAS today.

The scientists emphasize that the rapid expansion of human activities since the industrial revolution has now generated a global geophysical force equivalent to some of the great forces of nature.

"We are entering the Anthropocene, a new geological era in which our activities are threatening the earth's capacity to regulate itself," said co-author Will Steffen, professor at the Australian National University (ANU) and director of the ANU Climate Change Institute. "We are beginning to push the planet out of its current stable Holocene state, the warm period that began about 10,000 years ago and during which agriculture and complex societies, including our own, have developed and flourished. The expanding human enterprise could undermine the resilience of the Holocene state, which would otherwise continue for thousands of years into the future."

Robert Costanza, director of the Gund Institute at the University of Vermont and one of the IHOPE project leaders at NCEAS, said: "Human history has traditionally been cast in terms of the rise and fall of great civilizations, wars, and specific human achievements. This history leaves out the important ecological and climate contexts that shaped and mediated these events. Human history and earth system history have traditionally been developed independently, with little interaction among the academic communities. The Nature article provides evidence of the necessities to establish a thorough, long-term historical understanding of the exchange between human societies and the earth system, in order to set standards for safe navigation within planetary boundaries and avoid crossing dangerous thresholds."

Planetary boundaries is a way of thinking that will not replace politics, economics, or ethics, explained environmental historian Sverker Sörlin of the Stockholm Resilience Centre and the Royal Institute of Technology, Stockholm. "But it will help tell all of us where the dangerous limits are and therefore when it is ethically unfair to allow more emissions of dangerous substances, further reduction of biodiversity, or to continue the erosion of the resource base. It provides the ultimate guardrails that can help societies to take action politically, economically. Planetary boundaries should be seen both as signals of the need for caution and as an encouragement to innovation and new thinking of how to operate safely within these boundaries while at same time securing human well being for all."

Lead author Johan Rockström, director of the Stockholm Resilience Centre at Stockholm University, said: "The human pressure on the Earth System has reached a scale where abrupt global environmental change can no longer be excluded. To continue to live and operate safely, humanity has to stay away from critical 'hard-wired' thresholds in Earth's environment, and respect the nature of the planet's climatic, geophysical, atmospheric and ecological processes. Transgressing planetary boundaries may be devastating for humanity, but if we respect them we have a bright future for centuries ahead."

In addition to the authors named above, the group of IHOPE-related scientists who contributed to the Nature article includes systems ecologist Carl Folke, of the Stockholm Resilience Centre, and archaeologist Sander van der Leeuw at Arizona State University. Among other authors are Katherine Richardson, an oceanographic biologist with the University of Copenhagen, and Nobel laureate Paul Crutzen, an atmospheric chemist with the Max Planck Institute, Mainz, Germany.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>